Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nicholas R. Atkins is active.

Publication


Featured researches published by Nicholas R. Atkins.


Journal of Turbomachinery-transactions of The Asme | 2011

Turbine Blade Tip Heat Transfer in Low Speed and High Speed Flows

Andrew P. S. Wheeler; Nicholas R. Atkins; L. He

In this paper, high and low speed tip flows are investigated for a high-pressure turbine blade. Previous experimental data are used to validate a CFD code, which is then used to study the tip heat transfer in high and low speed cascades. The results show that at engine representative Mach numbers the tip flow is predominantly transonic. Thus, compared to the low speed tip flow, the heat transfer is affected by reductions in both the heat transfer coefficient and the recovery temperature. The high Mach numbers in the tip region (M>1.5) lead to large local variations in recovery temperature. Significant changes in the heat transfer coefficient are also observed. These are due to changes in the structure of the tip flow at high speed. At high speeds, the pressure side corner separation bubble reattachment occurs through supersonic acceleration which halves the length of the bubble when the tip gap exit Mach number is increased from 0.1 to 1.0. In addition, shock/boundary-layer interactions within the tip gap lead to large changes in the tip boundary-layer thickness. These effects give rise to significant differences in the heat-transfer coefficient within the tip region compared to the low-speed tip flow. Compared to the low speed tip flow, the high speed tip flow is much less dominated by turbulent dissipation and is thus less sensitive to the choice of turbulence model. These results clearly demonstrate that blade tip heat transfer is a strong function of Mach number, an important implication when considering the use of low speed experimental testing and associated CFD validation in engine blade tip design


Journal of Turbomachinery-transactions of The Asme | 2014

Winglets for Improved Aerothermal Performance of High Pressure Turbines

John D. Coull; Nicholas R. Atkins; H. P. Hodson

© 2014 by ASME. This paper investigates the design of winglet tips for unshrouded high pressure turbine rotors considering aerodynamic and thermal performance simultaneously. A novel parameterization method has been developed to alter the tip geometry of a rotor blade. A design survey of uncooled, flat-tipped winglets is performed using Reynolds-averaged Navier-Stokes (RANS) calculations for a single rotor at engine representative operating conditions. Compared to a plain tip, large efficiency gains can be realized by employing an overhang around the full perimeter of the blade, but the overall heat load rises significantly. By employing an overhang on only the early suction surface, significant efficiency improvements can be obtained without increasing the overall heat transfer to the blade. The flow physics are explored in detail to explain the results. For a plain tip, the leakage and passage vortices interact to create a three-dimensional impingement onto the blade suction surface, causing high heat transfer. The addition of an overhang on the early suction surface displaces the tip leakage vortex away from the blade, weakening the impingement effect and reducing the heat transfer on the blade. The winglets reduce the aerodynamic losses by unloading the tip section, reducing the leakage flow rate, turning the leakage flow in a more streamwise direction, and reducing the interaction between the leakage fluid and end wall flows. Generally, these effects are most effective close to the leading edge of the tip where the leakage flow is subsonic.


Journal of Engineering for Gas Turbines and Power-transactions of The Asme | 2012

Experimental Investigation of Turbine Stator Well Rim Seal, Re-Ingestion and Interstage Seal Flows Using Gas Concentration Techniques and Displacement Measurements

Daniel Eastwood; Daniel Coren; Christopher Long; Nicholas R. Atkins; Peter R.N. Childs; T. J. Scanlon; A. Guijarro-Valencia

Gas turbine engine performance requires effective and reliable internal cooling over the duty cycle of the engine. Life predictions for rotating components subject to the main gas path temperatures are vital. This demands increased precision in the specification of the internal air system flows which provide turbine stator well cooling and sealing. This in turn requires detailed knowledge of the flow rates through rim seals and interstage labyrinth seals. Knowledge of seal movement and clearances at operating temperatures is of great importance when prescribing these flows. A test facility has been developed at the University of Sussex, incorporating a two stage turbine rated at 400 kW with an individual stage pressure ratio of 1.7:1. The mechanical design of the test facility allows internal cooling geometry to be rapidly re-configured, while cooling flow rates of between 0.71 CW, ENT and 1.46 CW, ENT, may be set to allow ingress or egress dominated cavity flows. The main annulus and cavity conditions correspond to in cavity rotational Reynolds numbers of 1.71 × 106 < Reϕ <1.93 × 106. Displacement sensors have been used to establish hot running seal clearances over a range of stator well flow conditions, allowing realistic flow rates to be calculated. Additionally, gas seeding techniques have been developed, where stator well and main annulus flow interactions are evaluated by measuring changes in gas concentration. Experiments have been performed which allow rim seal and re-ingestion flows to be quantified. It will be shown that this work develops the measurement of stator well cooling flows and provides data suitable for the validation of improved thermo-mechanical and CFD codes, beneficial to the engine design process.


Journal of Turbomachinery-transactions of The Asme | 2012

Unsteady Effects on Transonic Turbine Blade-Tip Heat Transfer

Nicholas R. Atkins; Steven J. Thorpe; Roger W. Ainsworth

In a gas turbine engine the blade tips of the high-pressure turbine are exposed to high levels of convective heat transfer, because of the so-called tip-leakage phenomenon. The blade-lift distribution is known to control the flow distribution in the blade–tip gap. However, the interaction between upstream nozzle guide vanes and the rotor blades produces a time-varying flow field that induces varying flow conditions around the blade and within the tip gap. Extensive measurements of the unsteady blade-tip heat transfer have been made in an engine representative transonic turbine. These include measurements along the mean camber line of the blade tip, which have revealed significant variation in both time-mean and time-varying heat flux. The influences of potential interaction and the vane trailing edge have been observed. Numerical calculations of the turbine stage using a Reynolds-averaged-Navier-Stokes-based computational fluid dynamics code have also been conducted. In combination with the experimental results, these have enabled the time-varying flow field to be probed in the blade-relative frame of reference. This has allowed a deeper analysis of the unsteady heat-transfer data, and the quantification of the impact of vane potential field and vane trailing edge interaction on the tip-region flow and heat transfer. In particular, the separate effects of time-varying flow temperature and heat-transfer coefficient have been established.


ASME Turbo Expo 2005: Power for Land, Sea, and Air | 2005

The Measurement of Shaft Power in a Fully Scaled Transient Turbine Test Facility

Nicholas R. Atkins; Roger W. Ainsworth

Transient test facilities offer the potential for the simultaneous study of turbine aerodynamic performance, unsteady flow phenomena and the heat transfer characteristics of a turbine stage. This paper describes the accurate measurement of the shaft power generated by the turbine in the Oxford Rotor Facility (ORF), one of the key requirements for aerodynamic performance testing. A high resolution encoder system has been developed for the accurate measurement of the turbine speed and acceleration. The desired accuracy and frequency response specifications of the system are outlined. The method that has been developed to characterise the error signature of the encoder disc and the signal processing used to remove it are also outlined. The measurement of the losses due to disc windage and bearing friction are also described.Copyright


Journal of Engineering for Gas Turbines and Power-transactions of The Asme | 2016

A COMPARISON OF SINGLE AND DOUBLE LIP RIM SEAL GEOMETRIES

Svilen S. Savov; Nicholas R. Atkins; Sumiu Uchida

Copyright


ASME Turbo Expo 2014: Turbine Technical Conference and Exposition | 2014

High efficiency cavity winglets for high pressure turbines

John D. Coull; Nicholas R. Atkins; H. P. Hodson

Copyright


Journal of Turbomachinery-transactions of The Asme | 2012

Heat Transfer in Turbine Hub Cavities Adjacent to the Main Gas Path

Jeffrey A. Dixon; Antonio Guijarro Valencia; Andreas Bauknecht; Daniel Coren; Nicholas R. Atkins

Reliablemeans of predicting heat transfer in cavities adjacent to themain gas path are increasingly being sought by engineers involvedin the design of gas turbines. In this paper anup-dated analysis of the interim results from an extended researchprogramme, MAGPI, sponsored by the EU and several leading gasturbine manufactures and universities, will be presented. Extensive use ismade of CFD and FE modelling techniques to understand thethermo-mechanical behaviour and convective heat transfer of a turbine statorwell cavity, including the interaction of cooling air supply withthe main annulus gas. It is also important to establishthe hot running seal clearances for a full understanding ofthe cooling flow distribution and heat transfer in the cavity.The objective of the study has been to provide ameans of optimising the design of such cavities (see Figure1) for maintaining a safe environment for critical parts, suchas disc rims and blade fixings, whilst maximising the turbineefficiency by means of reducing the fuel burn and emissionspenalties associated with the secondary airflow system. The modelling methodsemployed have been validated against data gathered from a dedicatedtwo-stage turbine rig, running at engine representative conditions. Extensive measurementsare available for a range of flow conditions and alternativecooling arrangements. The analysis method has been used to informa design change which will be tested in a secondtest phase. Data from this test will also be usedto further benchmark the analysis method. Comparisons are provided betweenthe predictions and measurements from the original configuration, turbine statorwell component temperature survey, including the use of a coupledanalysis technique between FE and CFD solutions


ASME Turbo Expo 2014: Turbine Technical Conference and Exposition | 2014

Flow in a Rotating Cavity With Axial Throughflow at Engine Representative Conditions

Nicholas R. Atkins; Vasudevan Kanjirakkad

The prediction of compressor drum cavity heat transfer is an important factor in the overall design of an aero engine. The rotationally dominated flow field within the cavity governs the heat transfer conditions by suppressing the motion of the fluid. Without heating, the fluid in the outer region of the cavity can approach solid body rotation. The outer cavity fluid is disturbed by the bore flow at the inner radius. The resultant bore flow vortex has been shown to exhibit many different modes of behaviour, dependent on the Rossby number. At higher Rossby number the bore flow vortex has been shown to break down into a precessing radial arm. It has also been shown that the hot drive arm (shroud) between the compressor stages destabilises the flow field through natural convection. This paper presents data from the Sussex Multiple Cavity Rig, which matches the fluid dynamic conditions of a compressor bore in terms of axial throughflow, rotational Reynolds number and Grashof number. It features titanium alloy discs, which are instrumented with surface thermocouples. This paper presents data which helps to separate the effects of throughflow Reynolds number, rotational Reynolds number and Grashof number on the dimensionless disc temperature profiles. In order to illustrate the flow structures this paper presents a hybrid RANS/LES model for the two highest Reynolds number cases. For these cases, the numerical simulations show a change from stable to unstable stratification with an increase in the bore to shroud temperature ratio in good qualitative agreement with the measured data.


ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition | 2011

The Influence of Turbine Stator Well Coolant Flow Rate and Passage Configuration on Cooling Effectiveness

Daniel Coren; Nicholas R. Atkins; Christopher Long; Daniel Eastwood; Peter R.N. Childs; A. Guijarro-Valencia; Jeffrey A. Dixon

Market competitiveness for aero engine power plant dictates that improvements in engine performance and reliability are guaranteed a priori by manufacturers. The requirement to accurately predict the life of engine components makes exacting demands of the internal air system, which must provide effective cooling over the engine duty cycle with the minimum consumption of compressor section air. Tests have been conducted at the University of Sussex using a turbine test facility which comprises a two stage turbine with an individual stage pressure ratio of 1.7:1. Main annulus air is supplied by an adapted Rolls-Royce Dart compressor at up to 440 K and 4.8 kg s−1 . Cooling flow rates ranging from 0.71 to 1.46 Cw, ent , a disc entrainment parameter, have been used to allow ingress or egress dominated stator well flow conditions. The mechanical design of the test section allows internal cooling geometry to be rapidly re-configured, allowing the effect of jet momentum and coolant trajectory to be investigated. An important facet to this investigation is the use of CFD to model and analyse the flow structures associated with the cavity conditions tested, as well as to inform the design of cooling path geometry. This paper reports on the effectiveness of stator well coolant flow rate and delivery configurations using experimental data and also CFD analysis to better quantify the effect of stator well flow distribution on component temperatures.Copyright

Collaboration


Dive into the Nicholas R. Atkins's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

H. P. Hodson

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge