Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nicholas R. Hum is active.

Publication


Featured researches published by Nicholas R. Hum.


Bone | 2016

Sclerostin antibody treatment improves fracture outcomes in a Type I diabetic mouse model

Cristal S. Yee; LiQin Xie; Sarah Hatsell; Nicholas R. Hum; Deepa Murugesh; Aris N. Economides; Gabriela G. Loots; Nicole M. Collette

Type 1 diabetes mellitus (T1DM) patients have osteopenia and impaired fracture healing due to decreased osteoblast activity. Further, no adequate treatments are currently available that can restore impaired healing in T1DM; hence a significant need exists to investigate new therapeutics for treatment of orthopedic complications. Sclerostin (SOST), a WNT antagonist, negatively regulates bone formation, and SostAb is a potent bone anabolic agent. To determine whether SOST antibody (SostAb) treatment improves fracture healing in streptozotocin (STZ) induced T1DM mice, we administered SostAb twice weekly for up to 21days post-fracture, and examined bone quality and callus outcomes at 21days and 42days post-fracture (11 and 14weeks of age, respectively). Here we show that SostAb treatment improves bone parameters; these improvements persist after cessation of antibody treatment. Markers of osteoblast differentiation such as Runx2, collagen I, osteocalcin, and DMP1 were reduced, while an abundant number of SP7/osterix-positive early osteoblasts were observed on the bone surface of STZ calluses. These results suggest that STZ calluses have poor osteogenesis resulting from failure of osteoblasts to fully differentiate and produce mineralized matrix, which produces a less mineralized callus. SostAb treatment enhanced fracture healing in both normal and STZ groups, and in STZ+SostAb mice, also reversed the lower mineralization seen in STZ calluses. Micro-CT analysis of calluses revealed improved bone parameters with SostAb treatment, and the mineralized bone was comparable to Controls. Additionally, we found sclerostin levels to be elevated in STZ mice and β-catenin activity to be reduced. Consistent with its function as a WNT antagonist, SostAb treatment enhanced β-catenin activity, but also increased the levels of SOST in the callus and in circulation. Our results indicate that SostAb treatment rescues the impaired osteogenesis seen in the STZ induced T1DM fracture model by facilitating osteoblast differentiation and mineralization of bone.


PLOS ONE | 2015

SOST Inhibits Prostate Cancer Invasion

Bryan D. Hudson; Nicholas R. Hum; Cynthia B. Thomas; Ayano C. Kohlgruber; Aimy Sebastian; Nicole M. Collette; Matthew A. Coleman; Blaine A. Christiansen; Gabriela G. Loots

Inhibitors of Wnt signaling have been shown to be involved in prostate cancer (PC) metastasis; however the role of Sclerostin (Sost) has not yet been explored. Here we show that elevated Wnt signaling derived from Sost deficient osteoblasts promotes PC invasion, while rhSOST has an inhibitory effect. In contrast, rhDKK1 promotes PC elongation and filopodia formation, morphological changes characteristic of an invasive phenotype. Furthermore, rhDKK1 was found to activate canonical Wnt signaling in PC3 cells, suggesting that SOST and DKK1 have opposing roles on Wnt signaling in this context. Gene expression analysis of PC3 cells co-cultured with OBs exhibiting varying amounts of Wnt signaling identified CRIM1 as one of the transcripts upregulated under highly invasive conditions. We found CRIM1 overexpression to also promote cell-invasion. These findings suggest that bone-derived Wnt signaling may enhance PC tropism by promoting CRIM1 expression and facilitating cancer cell invasion and adhesion to bone. We concluded that SOST and DKK1 have opposing effects on PC3 cell invasion and that bone-derived Wnt signaling positively contributes to the invasive phenotypes of PC3 cells by activating CRIM1 expression and facilitating PC-OB physical interaction. As such, we investigated the effects of high concentrations of SOST in vivo. We found that PC3-cells overexpressing SOST injected via the tail vein in NSG mice did not readily metastasize, and those injected intrafemorally had significantly reduced osteolysis, suggesting that targeting the molecular bone environment may influence bone metastatic prognosis in clinical settings.


Microarrays | 2015

Cancer–Osteoblast Interaction Reduces Sost Expression in Osteoblasts and Up-Regulates lncRNA MALAT1 in Prostate Cancer

Aimy Sebastian; Nicholas R. Hum; Bryan D. Hudson; Gabriela G. Loots

Dynamic interaction between prostate cancer and the bone microenvironment is a major contributor to metastasis of prostate cancer to bone. In this study, we utilized an in vitro co-culture model of PC3 prostate cancer cells and osteoblasts followed by microarray based gene expression profiling to identify previously unrecognized prostate cancer–bone microenvironment interactions. Factors secreted by PC3 cells resulted in the up-regulation of many genes in osteoblasts associated with bone metabolism and cancer metastasis, including Mmp13, Il-6 and Tgfb2, and down-regulation of Wnt inhibitor Sost. To determine whether altered Sost expression in the bone microenvironment has an effect on prostate cancer metastasis, we co-cultured PC3 cells with Sost knockout (SostKO) osteoblasts and wildtype (WT) osteoblasts and identified several genes differentially regulated between PC3-SostKO osteoblast co-cultures and PC3-WT osteoblast co-cultures. Co-culturing PC3 cells with WT osteoblasts up-regulated cancer-associated long noncoding RNA (lncRNA) MALAT1 in PC3 cells. MALAT1 expression was further enhanced when PC3 cells were co-cultured with SostKO osteoblasts and treatment with recombinant Sost down-regulated MALAT1 expression in these cells. Our results suggest that reduced Sost expression in the tumor microenvironment may promote bone metastasis by up-regulating MALAT1 in prostate cancer.


PLOS ONE | 2017

Maternal exposure to an environmentally relevant dose of triclocarban results in perinatal exposure and potential alterations in offspring development in the mouse model

Heather A. Enright; Miranda J. Sarachine Falso; Michael A. Malfatti; Victoria Lao; Edward A. Kuhn; Nicholas R. Hum; Yilan Shi; Ana Paula Sales; Kurt W. Haack; Kristen S. Kulp; Bruce A. Buchholz; Gabriela G. Loots; Graham Bench; Kenneth W. Turteltaub

Triclocarban (TCC) is among the top 10 most commonly detected wastewater contaminants in both concentration and frequency. Its presence in water, as well as its propensity to bioaccumulate, has raised numerous questions about potential endocrine and developmental effects. Here, we investigated whether exposure to an environmentally relevant concentration of TCC could result in transfer from mother to offspring in CD-1 mice during gestation and lactation using accelerator mass spectrometry (AMS). 14C-TCC (100 nM) was administered to dams through drinking water up to gestation day 18, or from birth to post-natal day 10. AMS was used to quantify 14C-concentrations in offspring and dams after exposure. We demonstrated that TCC does effectively transfer from mother to offspring, both trans-placentally and via lactation. TCC-related compounds were detected in the tissues of offspring with significantly higher concentrations in the brain, heart and fat. In addition to transfer from mother to offspring, exposed offspring were heavier in weight than unexposed controls demonstrating an 11% and 8.5% increase in body weight for females and males, respectively. Quantitative real-time polymerase chain reaction (qPCR) was used to examine changes in gene expression in liver and adipose tissue in exposed offspring. qPCR suggested alterations in genes involved in lipid metabolism in exposed female offspring, which was consistent with the observed increased fat pad weights and hepatic triglycerides. This study represents the first report to quantify the transfer of an environmentally relevant concentration of TCC from mother to offspring in the mouse model and evaluate bio-distribution after exposure using AMS. Our findings suggest that early-life exposure to TCC may interfere with lipid metabolism and could have implications for human health.


Journal of Bone and Mineral Research | 2018

SOST/Sclerostin Improves Posttraumatic Osteoarthritis and Inhibits MMP2/3 Expression After Injury: SOST OVEREXPRESSION IMPROVES PTOA OUTCOMES

Jiun C. Chang; Blaine A. Christiansen; Deepa K. Murugesh; Aimy Sebastian; Nicholas R. Hum; Nicole M. Collette; Sarah Hatsell; Aris N. Economides; Craig D. Blanchette; Gabriela G. Loots

Patients with anterior cruciate ligament (ACL) rupture are two times as likely to develop posttraumatic osteoarthritis (PTOA). Annually, there are ∼900,000 knee injuries in the United States, which account for ∼12% of all osteoarthritis (OA) cases. PTOA leads to reduced physical activity, deconditioning of the musculoskeletal system, and in severe cases requires joint replacement to restore function. Therefore, treatments that would prevent cartilage degradation post‐injury would provide attractive alternatives to surgery. Sclerostin (Sost), a Wnt antagonist and a potent negative regulator of bone formation, has recently been implicated in regulating chondrocyte function in OA. To determine whether elevated levels of Sost play a protective role in PTOA, we examined the progression of OA using a noninvasive tibial compression overload model in SOST transgenic (SOSTTG) and knockout (Sost‐/‐) mice. Here we report that SOSTTG mice develop moderate OA and display significantly less advanced PTOA phenotype at 16 weeks post‐injury compared with wild‐type (WT) controls and Sost‐/‐. In addition, SOSTTG built ∼50% and ∼65% less osteophyte volume than WT and Sost‐/‐, respectively. Quantification of metalloproteinase (MMP) activity showed that SOSTTG had ∼2‐fold less MMP activation than WT or Sost‐/‐, and this was supported by a significant reduction in MMP2/3 protein levels, suggesting that elevated levels of SOST inhibit the activity of proteolytic enzymes known to degrade articular cartilage matrix. Furthermore, intra‐articular administration of recombinant Sost protein, immediately post‐injury, also significantly decreased MMP activity levels relative to PBS‐treated controls, and Sost activation in response to injury was TNFα and NF‐κB dependent. These results provide in vivo evidence that sclerostin functions as a protective molecule immediately after joint injury to prevent cartilage degradation.


PLOS ONE | 2013

Interrogating Transcriptional Regulatory Sequences in Tol2-Mediated Xenopus Transgenics

Gabriela G. Loots; Anne Bergmann; Nicholas R. Hum; Catherine E. Oldenburg; Andrea E. Wills; Na Hu; Ivan Ovcharenko; Richard M. Harland

Identifying gene regulatory elements and their target genes in vertebrates remains a significant challenge. It is now recognized that transcriptional regulatory sequences are critical in orchestrating dynamic controls of tissue-specific gene expression during vertebrate development and in adult tissues, and that these elements can be positioned at great distances in relation to the promoters of the genes they control. While significant progress has been made in mapping DNA binding regions by combining chromatin immunoprecipitation and next generation sequencing, functional validation remains a limiting step in improving our ability to correlate in silico predictions with biological function. We recently developed a computational method that synergistically combines genome-wide gene-expression profiling, vertebrate genome comparisons, and transcription factor binding-site analysis to predict tissue-specific enhancers in the human genome. We applied this method to 270 genes highly expressed in skeletal muscle and predicted 190 putative cis-regulatory modules. Furthermore, we optimized Tol2 transgenic constructs in Xenopus laevis to interrogate 20 of these elements for their ability to function as skeletal muscle-specific transcriptional enhancers during embryonic development. We found 45% of these elements expressed only in the fast muscle fibers that are oriented in highly organized chevrons in the Xenopus laevis tadpole. Transcription factor binding site analysis identified >2 Mef2/MyoD sites within ∼200 bp regions in 6 of the validated enhancers, and systematic mutagenesis of these sites revealed that they are critical for the enhancer function. The data described herein introduces a new reporter system suitable for interrogating tissue-specific cis-regulatory elements which allows monitoring of enhancer activity in real time, throughout early stages of embryonic development, in Xenopus.


Journal of Bone and Mineral Research | 2018

Conditional Deletion of Sost in MSC-Derived Lineages Identifies Specific Cell-Type Contributions to Bone Mass and B-Cell Development.

Cristal S. Yee; Jennifer O. Manilay; Jiun C. Chang; Nicholas R. Hum; Deepa K. Murugesh; Jamila Bajwa; Melanie Mendez; Aris E. Economides; Daniel J. Horan; Alexander G. Robling; Gabriela G. Loots

Sclerostin (Sost) is a negative regulator of bone formation and blocking its function via antibodies has shown great therapeutic promise by increasing both bone mass in humans and animal models. Sclerostin deletion in Sost KO mice (Sost−/−) causes high bone mass (HBM) similar to sclerosteosis patients. Sost−/− mice have been shown to display an up to 300% increase in bone volume/total volume (BV/TV), relative to age‐matched controls. It has been postulated that the main source of skeletal sclerostin is the osteocyte. To understand the cell‐type specific contributions to the HBM phenotype described in Sost−/− mice, as well as to address the endocrine and paracrine mode of action of sclerostin, we examined the skeletal phenotypes of conditional Sost loss‐of‐function (SostiCOIN/iCOIN) mice with specific deletions in (1) the limb mesenchyme (Prx1‐Cre; targets osteoprogenitors and their progeny); (2) midstage osteoblasts and their progenitors (Col1‐Cre); (3) mature osteocytes (Dmp1‐Cre); and (4) hypertrophic chondrocytes and their progenitors (ColX‐Cre). All conditional alleles resulted in significant increases in bone mass in trabecular bone in both the femur and lumbar vertebrae, but only Prx1‐Cre deletion fully recapitulated the amplitude of the HBM phenotype in the appendicular skeleton and the B‐cell defect described in the global KO. Despite WT expression of Sost in the axial skeleton of Prx1‐Cre deleted mice, these mice also had a significant increase in bone mass in the vertebrae, but the sclerostin released in circulation by the axial skeleton did not affect bone parameters in the appendicular skeleton. Also, both Col1 and Dmp1 deletion resulted in a similar 80% significant increase in trabecular bone mass, but only Col1 and Prx1 deletion resulted in a significant increase in cortical thickness. We conclude that several cell types within the Prx1‐osteoprogenitor‐derived lineages contribute significant amounts of sclerostin protein to the paracrine pool of Sost in bone.


Gene | 2018

Global gene expression analysis identifies Mef2c as a potential player in Wnt16-mediated transcriptional regulation

Aimy Sebastian; Nicholas R. Hum; Cesar Morfin; Deepa K. Murugesh; Gabriela G. Loots

Wnt16 is a major Wnt ligand involved in the regulation of postnatal bone homeostasis. Previous studies have shown that Wnt16 promotes bone formation and inhibits bone resorption, suggesting that this molecule could be targeted for therapeutic interventions to treat bone thinning disorders such as osteoporosis. However, the molecular mechanisms by which Wnt16 regulates bone metabolism is not yet fully understood. To better understand the molecular mechanisms by which Wnt16 promotes bone formation and to identify the target genes regulated by Wnt16 in osteoblasts, we treated calvarial osteoblasts purified from C57Bl/6 mice with recombinant Wnt16 and profiled the gene expression changes by RNA-seq at 24 h post-treatment. We also compared gene expression profiles of Wnt16-treated osteoblasts to canonical Wnt3a- and non-canonical Wnt5a-treated osteoblasts. This study identified 576 genes differentially expressed in Wnt16-treated osteoblasts compared to sham-treated controls; these included several members of Wnt pathway (Wnt2b, Wnt7b, Wnt11, Axin2, Sfrp2, Sfrp4, Fzd5 etc.) and TGF-β/BMP signaling pathway (Bmp7, Inhba, Inhbb, Tgfb2 etc.). Wnt16 also regulated a large number of genes with known bone phenotypes. We also found that about 37% (215/576) of the Wnt16 targets overlapped with Wnt3a targets and ~15% (86/576) overlapped with Wnt5a targets, suggesting that Wnt16 activates both canonical and non-canonical Wnt signaling targets in osteoblasts. Transcription factor binding motif enrichment analysis in the promoter regions of Wnt16 targets identified noncanonical Wnt/JNK pathway activated transcription factors Fosl2 and Fosl1 as two of the most significantly enriched transcription factors associated with genes activated by Wnt16 while Mef2c was the most significantly enriched transcription factor associated with genes repressed by Wnt16. We also found that a large number of Mef2c targets overlapped with genes down-regulated by Wnt16 and Mef2c itself was transcriptionally repressed by Wnt16 suggesting that Mef2c plays a role in Wnt16-mediated transcriptional regulation.


PLOS ONE | 2017

Wnt co-receptors Lrp5 and Lrp6 differentially mediate Wnt3a signaling in osteoblasts

Aimy Sebastian; Nicholas R. Hum; Deepa K. Murugesh; Sarah Hatsell; Aris N. Economides; Gabriela G. Loots

Wnt3a is a major regulator of bone metabolism however, very few of its target genes are known in bone. Wnt3a preferentially signals through transmembrane receptors Frizzled and co-receptors Lrp5/6 to activate the canonical signaling pathway. Previous studies have shown that the canonical Wnt co-receptors Lrp5 and Lrp6 also play an essential role in normal postnatal bone homeostasis, yet, very little is known about specific contributions by these co-receptors in Wnt3a-dependent signaling. We used high-throughput sequencing technology to identify target genes regulated by Wnt3a in osteoblasts and to elucidate the role of Lrp5 and Lrp6 in mediating Wnt3a signaling. Our study identified 782 genes regulated by Wnt3a in primary calvarial osteoblasts. Wnt3a up-regulated the expression of several key regulators of osteoblast proliferation/ early stages of differentiation while inhibiting genes expressed in later stages of osteoblastogenesis. We also found that Lrp6 is the key mediator of Wnt3a signaling in osteoblasts and Lrp5 played a less significant role in mediating Wnt3a signaling.


Scientific Reports | 2018

Tracking Tumor Colonization in Xenograft Mouse Models Using Accelerator Mass Spectrometry

Nicholas R. Hum; Kelly A. Martin; Michael A. Malfatti; Kurt W. Haack; Bruce A. Buchholz; Gabriela G. Loots

Here we introduce an Accelerator Mass Spectrometry (AMS)-based high precision method for quantifying the number of cancer cells that initiate metastatic tumors, in xenograft mice. Quantification of 14C per cell prior to injection into animals, and quantification of 14C in whole organs allows us to extrapolate the number of cancer cells available to initiate metastatic tumors. The 14C labeling was optimized such that 1 cancer cell was detected among 1 million normal cells. We show that ~1–5% of human cancer cells injected into immunodeficient mice form subcutaneous tumors, and even fewer cells initiate metastatic tumors. Comparisons of metastatic site colonization between a highly metastatic (PC3) and a non-metastatic (LnCap) cell line showed that PC3 cells colonize target tissues in greater quantities at 2 weeks post-delivery, and by 12 weeks post-delivery no 14C was detected in LnCap xenografts, suggesting that all metastatic cells were cleared. The 14C-signal correlated with the presence and the severity of metastatic tumors. AMS measurements of 14C-labeled cells provides a highly-sensitive, quantitative assay to experimentally evaluate metastasis and colonization of target tissues in xenograft mouse models. This approach can potentially be used to evaluate tumor aggressiveness and assist in making informed decisions regarding treatment.

Collaboration


Dive into the Nicholas R. Hum's collaboration.

Top Co-Authors

Avatar

Gabriela G. Loots

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Aimy Sebastian

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kelly A. Martin

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Bruce A. Buchholz

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Kurt W. Haack

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cristal S. Yee

Lawrence Livermore National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge