Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nicholas R. Waterfield is active.

Publication


Featured researches published by Nicholas R. Waterfield.


Proceedings of the National Academy of Sciences of the United States of America | 2002

A single Photorhabdus gene, makes caterpillars floppy (mcf), allows Escherichia coli to persist within and kill insects

Phillip J. Daborn; Nicholas R. Waterfield; C. P. Silva; Candy P. Y. Au; S. Sharma; Richard H. ffrench-Constant

Photorhabdus luminescens, a bacterium with alternate pathogenic and symbiotic phases of its lifestyle, represents a source of novel genes associated with both virulence and symbiosis. This entomopathogen lives in a “symbiosis of pathogens” with nematodes that invade insects. Thus the bacteria are symbiotic with entomopathogenic nematodes but become pathogenic on release from the nematode into the insect blood system. Within the insect, the bacteria need to both avoid the peptide- and cellular- (hemocyte) mediated immune response and also to kill the host, which then acts as a reservoir for bacterial and nematode reproduction. However, the mechanisms whereby Photorhabdus evades the insect immune system and kills the host are unclear. Here we show that a single large Photorhabdus gene, makes caterpillars floppy (mcf), is sufficient to allow Esherichia coli both to persist within and kill an insect. The predicted high molecular weight Mcf toxin has little similarity to other known protein sequences but carries a BH3 domain and triggers apoptosis in both insect hemocytes and the midgut epithelium.


Trends in Microbiology | 2001

The tc genes of Photorhabdus: a growing family.

Nicholas R. Waterfield; David J. Bowen; Jacqueline D. Fetherston; Robert D. Perry; Richard H. ffrench-Constant

The toxin complex (tc) genes of Photorhabdus encode insecticidal, high molecular weight Tc toxins. These toxins have been suggested as useful alternatives to those derived from Bacillus thuringiensis for expression in insect-resistant transgenic plants. Although Photorhabdus luminescens is symbiotic with nematodes that kill insects, tc genes have recently been described from other insect-associated bacteria such as Serratia entomophila, an insect pathogen, and Yersinia pestis, the causative agent of bubonic plague, which has a flea vector. Here, recent advances in our understanding of the tc gene family are reviewed in view of their potential development as insect-control agents.


Annual Review of Microbiology | 2009

Photorhabdus and a Host of Hosts

Nicholas R. Waterfield; Todd A. Ciche; David J. Clarke

Photorhabdus is a member of the family Enterobacteriaceae that lives in a mutualistic association with a Heterorhabditis nematode worm. The nematode worm burrows into insect prey and regurgitates Photorhabdus, which goes on to kill the insect. The nematode feeds off the growing bacteria until the insect tissues are exhausted, whereupon they reassociate and leave the cadaver in search of new prey. This highly efficient partnership has been used for many years as a biological crop protection agent. The dual nature of Photorhabdus as a pathogen and mutualist makes it a superb model for understanding these apparently exclusive activities. Furthermore, recently identified clinical isolates of Photorhabdus are helping us to understand how human pathogens can emerge from the enormous reservoir of invertebrate pathogens in the environment. As Photorhabdus has never been found outside a host animal, its niche represents an entirely biotic landscape. In this review we discuss what molecular adaptations allow this bacterium to complete this fascinating and complex life cycle.


Cellular Microbiology | 2002

Bacterial infection of a model insect: Photorhabdus luminescens and Manduca sexta

Carlos P. Silva; Nicholas R. Waterfield; Phillip J. Daborn; Paul Dean; Timothy Chilver; Candy P. Y. Au; Sadhana Sharma; Ursula Potter; Stuart E. Reynolds; Richard H. ffrench-Constant

Invertebrates, including insects, are being developed as model systems for the study of bacterial virulence. However, we understand little of the interaction between bacteria and specific invertebrate tissues or the immune system. To establish an infection model for Photorhabdus, which is released directly into the insect blood system by its nematode symbiont, we document the number and location of recoverable bacteria found during infection of Manduca sexta. After injection into the insect larva, P. luminescens multiplies in both the midgut and haemolymph, only later colonizing the fat body and the remaining tissues of the cadaver. Bacteria persist by suppressing haemocyte‐mediated phagocytosis and culture supernatants grown in vitro, as well as plasma from infected insects, suppress phagocytosis of P. luminescens. Using GFP‐labelled bacteria, we show that colonization of the gut begins at the anterior of the midgut and proceeds posteriorly. Within the midgut, P. luminescens occupies a specific niche between the extracellular matrix and basal membrane (lamina) of the folded midgut epithelium. Here, the bacteria express the gut‐active Toxin complex A (Tca) and an RTX‐like metalloprotease PrtA. This close association of the bacteria with the gut, and the production of toxins and protease, triggers a massive programmed cell death of the midgut epithelium.


Journal of Bacteriology | 2001

Measuring Virulence Factor Expression by the Pathogenic Bacterium Photorhabdus luminescens in Culture and during Insect Infection

Phillip J. Daborn; Nicholas R. Waterfield; Mark A. Blight; Richard H. ffrench-Constant

During insect infection Photorhabdus luminescens emits light and expresses virulence factors, including insecticidal toxin complexes (Tcs) and an RTX-like metalloprotease (Prt). Using quantitative PCR and protein assays, we describe the expression patterns of these factors both in culture and during insect infection and compare them to the associated bacterial growth curves. In culture, light and active Prt protease are produced in stationary phase. Tca also appears in stationary phase, whereas Tcd is expressed earlier. These patterns seen in a culture flask are strikingly similar to those observed during insect infection. Thus, in an infected insect, bacteria grow exponentially until the time of insect death at approximately 48 h, when both light and the virulence factors Prt protease and Tca are produced. In contrast, Tcd appears much earlier in insect infection. However, at present, the biological significance of this difference in timing of the production of the two toxins in unclear. This is the first documentation of the expression of Tcs and Prt in an insect and highlights the malleability of Photorhabdus as a model system for bacterial infection.


Cell Host & Microbe | 2014

A Pseudomonas aeruginosa Type VI Secretion Phospholipase D Effector Targets Both Prokaryotic and Eukaryotic Cells

Feng Jiang; Nicholas R. Waterfield; Jian Yang; Guowei Yang; Qi Jin

Widely found in animal and plant-associated proteobacteria, type VI secretion systems (T6SSs) are potentially capable of facilitating diverse interactions with eukaryotes and/or other bacteria. Pseudomonas aeruginosa encodes three distinct T6SS haemolysin coregulated protein (Hcp) secretion islands (H1, H2, and H3-T6SS), each involved in different aspects of the bacteriums interaction with other organisms. Here we describe the characterization of a P. aeruginosa H3-T6SS-dependent phospholipase D effector, PldB, and its three tightly linked cognate immunity proteins. PldB targets the periplasm of prokaryotic cells and exerts an antibacterial activity. Surprisingly, PldB also facilitates intracellular invasion of host eukaryotic cells by activation of the PI3K/Akt pathway, revealing it to be a trans-kingdom effector. Our findings imply a potentially widespread T6SS-mediated mechanism, which deploys a single phospholipase effector to influence both prokaryotic cells and eukaryotic hosts.


Nature Reviews Microbiology | 2004

Invertebrates as a source of emerging human pathogens

Nicholas R. Waterfield; Brendan W. Wren; Richard H. ffrench-Constant

Despite their importance, little is known about the origins of many emerging human pathogens. However, given the age and current predominance of invertebrates, it is likely that bacteria—invertebrate interactions are not only a present source of human pathogens but have also shaped their evolution. Pathogens of invertebrate and unicellular organisms represent an extensive reservoir of bacterial strains equipped with virulence factors that evolved to overcome the innate immune responses of their hosts. This reservoir might represent a source of new human pathogenic strains and might also foster the spread of novel virulence factors into existing human commensal or pathogenic bacteria. This article examines the available evidence for this concept by examining pairs of closely related bacteria, one of which is benign, but insect associated, and one of which is a human pathogen.


BMC Genomics | 2009

Comparative genomics of the emerging human pathogen Photorhabdus asymbiotica with the insect pathogen Photorhabdus luminescens.

Paul Wilkinson; Nicholas R. Waterfield; Lisa Crossman; Craig Corton; Maria Sanchez-Contreras; Isabella Vlisidou; Andrew Barron; Alexandra Bignell; Louise Clark; Douglas Ormond; Matthew Mayho; Nathalie Bason; Frances Smith; Mark Simmonds; Carol Churcher; David Harris; Nicholas R Thompson; Michael A. Quail; Julian Parkhill; Richard H. ffrench-Constant

BackgroundThe Gram-negative bacterium Photorhabdus asymbiotica (Pa) has been recovered from human infections in both North America and Australia. Recently, Pa has been shown to have a nematode vector that can also infect insects, like its sister species the insect pathogen P. luminescens (Pl). To understand the relationship between pathogenicity to insects and humans in Photorhabdus we have sequenced the complete genome of Pa strain ATCC43949 from North America. This strain (formerly referred to as Xenorhabdus luminescens strain 2) was isolated in 1977 from the blood of an 80 year old female patient with endocarditis, in Maryland, USA. Here we compare the complete genome of Pa ATCC43949 with that of the previously sequenced insect pathogen P. luminescens strain TT01 which was isolated from its entomopathogenic nematode vector collected from soil in Trinidad and Tobago.ResultsWe found that the human pathogen Pa had a smaller genome (5,064,808 bp) than that of the insect pathogen Pl (5,688,987 bp) but that each pathogen carries approximately one megabase of DNA that is unique to each strain. The reduced size of the Pa genome is associated with a smaller diversity in insecticidal genes such as those encoding the Toxin complexes (Tcs), Makes caterpillars floppy (Mcf) toxins and the Photorhabdus Virulence Cassettes (PVCs). The Pa genome, however, also shows the addition of a plasmid related to pMT1 from Yersinia pestis and several novel pathogenicity islands including a novel Type Three Secretion System (TTSS) encoding island. Together these data suggest that Pa may show virulence against man via the acquisition of the pMT1-like plasmid and specific effectors, such as SopB, that promote its persistence inside human macrophages. Interestingly the loss of insecticidal genes in Pa is not reflected by a loss of pathogenicity towards insects.ConclusionOur results suggest that North American isolates of Pa have acquired virulence against man via the acquisition of a plasmid and specific virulence factors with similarity to those shown to play roles in pathogenicity against humans in other bacteria.


Applied and Environmental Microbiology | 2000

A genomic sample sequence of the entomopathogenic bacterium Photorhabdus luminescens W14: potential implications for virulence.

Richard H. ffrench-Constant; Nicholas R. Waterfield; Valerie Burland; Nicole T. Perna; Phillip J. Daborn; David V. Bowen; Frederick R. Blattner

ABSTRACT Photorhabdus luminescens is a pathogenic bacterium that lives in the guts of insect-pathogenic nematodes. After invasion of an insect host by a nematode, bacteria are released from the nematode gut and help kill the insect, in which both the bacteria and the nematodes subsequently replicate. However, the bacterial virulence factors associated with this “symbiosis of pathogens” remain largely obscure. In order to identify genes encoding potential virulence factors, we performed ∼2,000 random sequencing reads from a P. luminescens W14 genomic library. We then compared the sequences obtained to sequences in existing gene databases and to theEscherichia coli K-12 genome sequence. Here we describe the different classes of potential virulence factors found. These factors include genes that putatively encode Tc insecticidal toxin complexes, Rtx-like toxins, proteases and lipases, colicin and pyocins, and various antibiotics. They also include a diverse array of secretion (e.g., type III), iron uptake, and lipopolysaccharide production systems. We speculate on the potential functions of each of these gene classes in insect infection and also examine the extent to which the invertebrate pathogen P. luminescens shares potential antivertebrate virulence factors. The implications for understanding both the biology of this insect pathogen and links between the evolution of vertebrate virulence factors and the evolution of invertebrate virulence factors are discussed.


Cellular Microbiology | 2005

Potentiation and cellular phenotypes of the insecticidal Toxin complexes of Photorhabdus bacteria

Nicholas R. Waterfield; Michelle C. Hares; Guowei Yang; Andrea J. Dowling; Richard H. ffrench-Constant

The toxin complex (tc) genes of bacteria comprise a large and growing family whose mode of action remains obscure. In the insect pathogen Photorhabdus, tc genes encode high molecular weight insecticidal toxins with oral activity against caterpillar pests. One protein, TcdA, has recently been expressed in transgenic plants and shown to confer insect resistance. These toxins therefore represent alternatives to toxins from Bacillus thuringiensis (Bt) for deployment in transgenic crops. Levels of TcdA expression in transgenic plants were, however, low and the full toxicity associated with the native toxin was not reconstituted. Here we show that increased activity of the toxin TcdA1 requires potentiation by either of two pairs of gene products, TcdB1 and TccC1 or TcdB2 and TccC3. Moreover, these same pairs of proteins can also cross‐potentiate a second toxin, TcaA1B1. To elucidate the likely functional domains present in these large proteins, we expressed fragments of each ‘toxin’ or ‘potentiator’ gene within mammalian cells. Several domains produced abnormal cellular morphologies leading to cell death, while others showed specific phenotypes such as nuclear translocation. Our results prove that the Tc toxins are complex proteins with multiple functional domains. They also show that both toxin genes and their potentiator pairs will need to be expressed to reconstitute full activity in insect‐resistant transgenic plants. Moreover, they suggest that the same potentiator pair will be able to cross‐potentiate more than one toxin in a single plant.

Collaboration


Dive into the Nicholas R. Waterfield's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Helge B. Bode

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge