Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michelle C. Hares is active.

Publication


Featured researches published by Michelle C. Hares.


Cellular Microbiology | 2005

Potentiation and cellular phenotypes of the insecticidal Toxin complexes of Photorhabdus bacteria

Nicholas R. Waterfield; Michelle C. Hares; Guowei Yang; Andrea J. Dowling; Richard H. ffrench-Constant

The toxin complex (tc) genes of bacteria comprise a large and growing family whose mode of action remains obscure. In the insect pathogen Photorhabdus, tc genes encode high molecular weight insecticidal toxins with oral activity against caterpillar pests. One protein, TcdA, has recently been expressed in transgenic plants and shown to confer insect resistance. These toxins therefore represent alternatives to toxins from Bacillus thuringiensis (Bt) for deployment in transgenic crops. Levels of TcdA expression in transgenic plants were, however, low and the full toxicity associated with the native toxin was not reconstituted. Here we show that increased activity of the toxin TcdA1 requires potentiation by either of two pairs of gene products, TcdB1 and TccC1 or TcdB2 and TccC3. Moreover, these same pairs of proteins can also cross‐potentiate a second toxin, TcaA1B1. To elucidate the likely functional domains present in these large proteins, we expressed fragments of each ‘toxin’ or ‘potentiator’ gene within mammalian cells. Several domains produced abnormal cellular morphologies leading to cell death, while others showed specific phenotypes such as nuclear translocation. Our results prove that the Tc toxins are complex proteins with multiple functional domains. They also show that both toxin genes and their potentiator pairs will need to be expressed to reconstitute full activity in insect‐resistant transgenic plants. Moreover, they suggest that the same potentiator pair will be able to cross‐potentiate more than one toxin in a single plant.


Fems Microbiology Letters | 2003

The insecticidal toxin Makes caterpillars floppy 2 (Mcf2) shows similarity to HrmA, an avirulence protein from a plant pathogen

Nicholas R. Waterfield; Phillip J. Daborn; Andrea J. Dowling; Guowei Yang; Michelle C. Hares; Richard H. ffrench-Constant

The Photorhabdus luminescens W14 toxin encoding gene makes caterpillars floppy (mcf) was discovered due to its ability to kill caterpillars when expressed in Escherichia coli. Here we describe a homologue of mcf (renamed as mcf1), termed mcf2, discovered in the same genome. The mcf2 gene predicts another large toxin whose central domain, like Mcf1, also shows limited homology to Clostridium cytotoxin B. However, the N-terminus of Mcf2 shows significant similarity to the type-III secreted effector HrmA from the plant pathogen Pseudomonas syringae and no similarity to the N-terminus of Mcf1. HrmA is a plant avirulence gene whose transient expression in tobacco cells results in cell death. Here we show that E. coli expressing Mcf2 can, like E. coli expressing Mcf1, kill insects. Further, expression of the c-Myc tagged N-terminus of Mcf2, the region showing similarity to HrmA, results in nuclear localisation of the fusion protein and subsequent destruction of transfected mammalian cells. The Mcf1 and Mcf2 toxins therefore belong to a family of high molecular mass toxins, differing at their N-termini, which encode different effector domains.


Microbiology | 2008

The Yersinia pseudotuberculosis and Yersinia pestis toxin complex is active against cultured mammalian cells

Michelle C. Hares; Stewart J. Hinchliffe; Philippa C. R. Strong; Ioannis Eleftherianos; Andrea J. Dowling; Richard H. ffrench-Constant; Nicholas R. Waterfield

The toxin complex (Tc) genes were first identified in the insect pathogen Photorhabdus luminescens and encode approximately 1 MDa protein complexes which are toxic to insect pests. Subsequent genome sequencing projects have revealed the presence of tc orthologues in a range of bacterial pathogens known to be associated with insects. Interestingly, members of the mammalian-pathogenic yersiniae have also been shown to encode Tc orthologues. Studies in Yersinia enterocolitica have shown that divergent tc loci either encode insect-active toxins or play a role in colonization of the gut in gastroenteritis models of rats. So far little is known about the activity of the Tc proteins in the other mammalian-pathogenic yersiniae. Here we present work to suggest that Tc proteins in Yersinia pseudotuberculosis and Yersinia pestis are not insecticidal toxins but have evolved for mammalian pathogenicity. We show that Tc is secreted by Y. pseudotuberculosis strain IP32953 during growth in media at 28 degrees C and 37 degrees C. We also demonstrate that oral toxicity of strain IP32953 to Manduca sexta larvae is not due to Tc expression and that lysates of Escherichia coli BL21 expressing the Yersinia Tc proteins are not toxic to Sf9 insect cells but are toxic to cultured mammalian cell lines. Cell lysates of E. coli BL21 expressing the Y. pseudotuberculosis Tc proteins caused actin ruffles, vacuoles and multi-nucleation in cultured human gut cells (Caco-2); similar morphology was observed after application of a lysate of E. coli BL21 expressing the Y. pestis Tc proteins to mouse fibroblast NIH3T3 cells, but not Caco-2 cells. Finally, transient expression of the individual Tc proteins in Caco-2 and NIH3T3 cell lines reproduced the actin and nuclear rearrangement observed with the topical applications. Together these results add weight to the growing hypothesis that the Tc proteins in Y. pseudotuberculosis and Y. pestis have been adapted for mammalian pathogenicity. We further conclude that Tc proteins from Y. pseudotuberculosis and Y. pestis display differential mammalian cell specificity in their toxicity.


The Open Toxinology Journal | 2013

Insecticidal Toxins from the Photorhabdus and Xenorhabdus Bacteria

Stewart J. Hinchliffe; Michelle C. Hares; Andrea J. Dowling; Richard H. ffrench-Constant

Insect pathogens are an excellent source of novel insecticidal agents with proven toxicity. In particular, bacteria from the genera Photorhabdus and Xenorhabdus are proving to be a genomic goldmine, encoding a multitude of insecticidal toxins. Some are highly specific in their target species, whilst others are more generalist, but all are of potential use in crop protection against insect pests. These astounding bacterial species are also turning out to be equipped to produce a vast range of anti-microbial compounds which could be of use to medical science. This review will cover the current knowledge of the lifecycles of the two genera and the potential role of the toxins in their biology, before a more in depth exploration of some of the best studied toxins and their potential use in agriculture.


Cellular Microbiology | 2007

The Mcf1 toxin induces apoptosis via the mitochondrial pathway and apoptosis is attenuated by mutation of the BH3-like domain.

Andrea J. Dowling; Nicholas R. Waterfield; Michelle C. Hares; Gaëlle Le Goff; Charles H. Streuli; Richard H. ffrench-Constant

Photorhabdus are Gram‐negative, nematode‐vectored bacteria that produce toxins to kill their insect hosts. The expression of one of these, Makes caterpillars floppy 1 (Mcf1), is sufficient to allow Escherichia coli to survive within, and kill, caterpillars which are otherwise able to clear E. coli infection. Mcf1 treated caterpillars show rapid loss of body turgor (the ‘floppy’ phenotype) and death is associated with massive apoptosis of both the midgut epithelium and insect phagocytes. Mammalian tissue culture cells treated with Mcf1 also display key features of apoptosis including zeiosis, apoptotic nuclear morphology, DNA laddering, activation of the effector caspase‐3 and PARP cleavage. As Mcf1 carries a single BH3‐like domain, here we investigate the hypothesis that this toxin promotes apoptosis via the mitochondrial pathway by mimicking a BH3 domain‐only protein. Consistent with this hypothesis, a double mutant within the BH3‐like domain causes a dramatic decline in apoptosis. Mcf1 also alters mitochondrial membrane potential and triggers the release of cytochrome c. Cells overexpressing Bcl‐xL, an anti‐apoptotic Bcl‐2 family member, are resistant to Mcf1‐mediated apoptosis, as are cells deficient in Bax. In addition, translocation of Bax to the mitochondrion is observed in response to Mcf1 treatment. Together, these results show that Mcf1 mediates apoptosis via the mitochondrial pathway, and are consistent with the hypothesis that the BH3‐like domain in Mcf1 is a functional requirement for the pro‐apoptotic activity of Mcf1.


PLOS ONE | 2014

Age-Related Declines and Disease-Associated Variation in Immune Cell Telomere Length in a Wild Mammal

Christopher Beirne; Richard J. Delahay; Michelle C. Hares; Andrew J. Young

Immunosenescence, the deterioration of immune system capability with age, may play a key role in mediating age-related declines in whole-organism performance, but the mechanisms that underpin immunosenescence are poorly understood. Biomedical research on humans and laboratory models has documented age and disease related declines in the telomere lengths of leukocytes (‘immune cells’), stimulating interest their having a potentially general role in the emergence of immunosenescent phenotypes. However, it is unknown whether such observations generalise to the immune cell populations of wild vertebrates living under ecologically realistic conditions. Here we examine longitudinal changes in the mean telomere lengths of immune cells in wild European badgers (Meles meles). Our findings provide the first evidence of within-individual age-related declines in immune cell telomere lengths in a wild vertebrate. That the rate of age-related decline in telomere length appears to be steeper within individuals than at the overall population level raises the possibility that individuals with short immune cell telomeres and/or higher rates of immune cell telomere attrition may be selectively lost from this population. We also report evidence suggestive of associations between immune cell telomere length and bovine tuberculosis infection status, with individuals detected at the most advanced stage of infection tending to have shorter immune cell telomeres than disease positive individuals. While male European badgers are larger and show higher rates of annual mortality than females, we found no evidence of a sex difference in either mean telomere length or the average rate of within-individual telomere attrition with age. Our findings lend support to the view that age-related declines in the telomere lengths of immune cells may provide one potentially general mechanism underpinning age-related declines in immunocompetence in natural populations.


Advances in Experimental Medicine and Biology | 2007

The insect toxin complex of Yersinia

Nicholas R. Waterfield; Michelle C. Hares; Stewart J. Hinchliffe; Brendan W. Wren; Richard H. ffrench-Constant

Many members of the Yersinia genus encode homologues of insect toxins first observed in bacteria that are insect pathogens such as Photorhabdus, Xenorhabdus and Serratia entomophila. These bacteria secrete high molecular weight insecticidal toxins comprised of multiple protein subunits, termed the Toxin Complexes or Tcs. In Photorhabdus three distinct Tc subunits are required for full oral toxicity in insects, that include the [A], [B] and [C] types, although the exact stochiometry remains unclear. The genomes of Photorhabdus strains encode multiple tc loci, although only two have been shown to exhibit oral and injectable activity against the Hawk Moth, Manduca sexta. The exact role of the remaining homologues is unclear. The availability of bacterial genome sequences has revealed the presence of tc gene homologues in many different species. In this chapter we review the tc gene homologues in Yersinia genus. We discuss what is known about the activity of the Yersinia Tc protein homologues and attempt to relate this to the evolution of the genus and of the tca gene family.


Applied and Environmental Microbiology | 2012

Histopathological Effects of the Yen-Tc Toxin Complex from Yersinia entomophaga MH96 (Enterobacteriaceae) on the Costelytra zealandica (Coleoptera: Scarabaeidae) Larval Midgut

S.D.G. Marshall; Michelle C. Hares; Sandra A. Jones; Lincoln A. Harper; James R. Vernon; Duane P. Harland; Trevor A. Jackson; Mark R. H. Hurst

ABSTRACT Yersinia entomophaga MH96, which was originally isolated from the New Zealand grass grub, Costelytra zealandica, produces an orally active proteinaceous toxin complex (Yen-Tc), and this toxin is responsible for mortality in a range of insect species, mainly within the Coleoptera and Lepidoptera. The genes encoding Yen-Tc are members of the toxin complex (Tc) family, with orthologs identified in several other bacterial species. As the mechanism of Yen-Tc activity remains unknown, a histopathological examination of C. zealandica larvae was undertaken in conjunction with cultured cells to identify the effects of Yen-Tc and to distinguish the contributions that its individual subunit components make upon intoxication. A progressive series of events that led to the deterioration of the midgut epithelium was observed. Additionally, experiments using a cell culture assay system were carried out to determine the cellular effects of intoxication on cells after topical application and the transient expression of Yen-Tc and its individual components. While observations were broadly consistent with those previously reported for other Tc family members, some differences were noted. In particular, the distinct stepwise disintegration of the midgut shared features associated with both apoptosis and necrotic programmed cell death pathways. Second, we observed, for the first time, a contribution of toxicity from two chitinases associated with the Yen-Tc complex. Our findings were suggestive of the activities encoded within the subunit components of Yen-Tc targeting different sites along putative programmed cell death pathways. Given the observed broad host range for Yen-Tc, these targeted loci are likely to be widely shared among insects.


Acta Crystallographica Section D-biological Crystallography | 2005

Structure of Murine Angiogenin: Features of the Substrate- and Cell-Binding Regions and Prospects for Inhibitor-Binding Studies.

Daniel E. Holloway; G.B. Chavali; Michelle C. Hares; Vasanta Subramanian; K.R. Acharya

Angiogenin is an unusual member of the pancreatic ribonuclease superfamily that induces blood-vessel formation and is a promising anticancer target. The three-dimensional structure of murine angiogenin (mAng) has been determined by X-ray crystallography. Two structures are presented: one is a complex with sulfate ions (1.5 Angstroms resolution) and the other a complex with phosphate ions (1.6 Angstroms resolution). Residues forming the putative B(1), P(1) and B(2) subsites occupy positions similar to their hAng counterparts and are likely to play similar roles. The anions occupy the P(1) subsite, sulfate binding conventionally and phosphate adopting two orientations, one of which is novel. The B(1) subsite is obstructed by Glu116 and Phe119, with the latter assuming a less invasive position than its hAng counterpart. Hydrophobic interactions between the C-terminal segment and the main body of the protein are more extensive than in hAng and may underly the lower enzymatic activity of the murine protein. Elsewhere, the structure of the H3-B2 loop supports the view that hAng Asn61 interacts directly with cell-surface molecules and does not merely stabilize adjacent regions of the hAng structure. mAng crystals appear to offer small-molecule inhibitors a clear route to the active site and may even withstand a reorientation of the C-terminal segment that provides access to the cryptic B(1) subsite. These features represent considerable advantages over crystalline hAng and bAng.


Behavioral Ecology | 2016

Variable ecological conditions promote male helping by changing banded mongoose group composition

Harry H. Marshall; Jennifer L. Sanderson; Francis Mwanghuya; Robert Businge; Solomon Kyabulima; Michelle C. Hares; Emma Inzani; Gladys Kalema-Zikusoka; Kenneth Mwesige; Faye J. Thompson; Emma Vitikainen; Michael A. Cant

Lay Summary Male banded mongooses babysit more when rainfall is variable. Banded mongooses live in cooperative family groups and males in particular help raise pups that are not necessarily their own. It has been suggested that ecological conditions affect cooperation, and our study confirms that the variability of conditions is important: Females face higher mortality during years with more variable rainfall, and males may be better off helping their relatives when there are fewer opportunities for mating. Twitter: @HarryHMarshall

Collaboration


Dive into the Michelle C. Hares's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge