Nicholas Rensing
Washington University in St. Louis
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nicholas Rensing.
The Journal of Neuroscience | 2009
Ling-Hui Zeng; Nicholas Rensing; Michael Wong
Understanding molecular mechanisms mediating epileptogenesis is critical for developing more effective therapies for epilepsy. We recently found that the mammalian target of rapamycin (mTOR) signaling pathway is involved in epileptogenesis, and mTOR inhibitors prevent epilepsy in a mouse model of tuberous sclerosis complex. Here, we investigated the potential role of mTOR in a rat model of temporal lobe epilepsy initiated by status epilepticus. Acute kainate-induced seizures resulted in biphasic activation of the mTOR pathway, as evident by an increase in phospho-S6 (P-S6) expression. An initial rise in P-S6 expression started ∼1 h after seizure onset, peaked at 3–6 h, and returned to baseline by 24 h in both hippocampus and neocortex, reflecting widespread stimulation of mTOR signaling by acute seizure activity. After resolution of status epilepticus, a second increase in P-S6 was observed in hippocampus only, which started at 3 d, peaked 5–10 d, and persisted for several weeks after kainate injection, correlating with the development of chronic epileptogenesis within hippocampus. The mTOR inhibitor rapamycin, administered before kainate, blocked both the acute and chronic phases of seizure-induced mTOR activation and decreased kainate-induced neuronal cell death, neurogenesis, mossy fiber sprouting, and the development of spontaneous epilepsy. Late rapamycin treatment, after termination of status epilepticus, blocked the chronic phase of mTOR activation and reduced mossy fiber sprouting and epilepsy but not neurogenesis or neuronal death. These findings indicate that mTOR signaling mediates mechanisms of epileptogenesis in the kainate rat model and that mTOR inhibitors have potential antiepileptogenic effects in this model.
Human Molecular Genetics | 2011
Ling-Hui Zeng; Nicholas Rensing; Bo Zhang; David H. Gutmann; Michael J. Gambello; Michael Wong
Tuberous Sclerosis Complex (TSC) is an autosomal dominant, multi-system disorder, typically involving severe neurological symptoms, such as epilepsy, cognitive deficits and autism. Two genes, TSC1 and TSC2, encoding the proteins hamartin and tuberin, respectively, have been identified as causing TSC. Although there is a substantial overlap in the clinical phenotype produced by TSC1 and TSC2 mutations, accumulating evidence indicates that TSC2 mutations cause more severe neurological manifestations than TSC1 mutations. In this study, the neurological phenotype of a novel mouse model involving conditional inactivation of the Tsc2 gene in glial-fibrillary acidic protein (GFAP)-positive cells (Tsc2(GFAP1)CKO mice) was characterized and compared with previously generated Tsc1(GFAP1)CKO mice. Similar to Tsc1(GFAP1)CKO mice, Tsc2(GFAP1)CKO mice exhibited epilepsy, premature death, progressive megencephaly, diffuse glial proliferation, dispersion of hippocampal pyramidal cells and decreased astrocyte glutamate transporter expression. However, Tsc2(GFAP1)CKO mice had an earlier onset and higher frequency of seizures, as well as significantly more severe histological abnormalities, compared with Tsc1(GFAP1)CKO mice. The differences between Tsc1(GFAP1)CKO and Tsc2(GFAP1)CKO mice were correlated with higher levels of mammalian target of rapamycin (mTOR) activation in Tsc2(GFAP1)CKO mice and were reversed by the mTOR inhibitor, rapamycin. These findings provide novel evidence in mouse models that Tsc2 mutations intrinsically cause a more severe neurological phenotype than Tsc1 mutations and suggest that the difference in phenotype may be related to the degree to which Tsc1 and Tsc2 inactivation causes abnormal mTOR activation.
Epilepsia | 2011
Sharon S. McDaniel; Nicholas Rensing; Liu Lin Thio; Kelvin A. Yamada; Michael Wong
The ketogenic diet (KD) is an effective treatment for epilepsy, but its mechanisms of action are poorly understood. We investigated the hypothesis that the KD inhibits mammalian target of rapamycin (mTOR) pathway signaling. The expression of pS6 and pAkt, markers of mTOR pathway activation, was reduced in hippocampus and liver of rats fed KD. In the kainate model of epilepsy, KD blocked the hippocampal pS6 elevation that occurs after status epilepticus. Because mTOR signaling has been implicated in epileptogenesis, these results suggest that the KD may have anticonvulsant or antiepileptogenic actions via mTOR pathway inhibition.
The Journal of Neuroscience | 2007
Ling-Hui Zeng; Lin Xu; Nicholas Rensing; Philip M. Sinatra; Steven M. Rothman; Michael Wong
Seizures may cause brain injury via a variety of mechanisms, potentially contributing to cognitive deficits in epilepsy patients. Although seizures induce neuronal death in some situations, they may also have “nonlethal” pathophysiological effects on neuronal structure and function, such as modifying dendritic morphology. Previous studies involving conventional fixed tissue analysis have demonstrated a chronic loss of dendritic spines after seizures in animal models and human tissue. More recently, in vivo time-lapse imaging methods have been used to monitor acute changes in spines directly during seizures, but documented spine loss only under severe conditions. Here, we examined effects of secondary generalized seizures induced by kainate, on dendritic structure of neocortical neurons using multiphoton imaging in live mice in vivo and investigated molecular mechanisms mediating these structural changes. Higher-stage kainate-induced seizures caused dramatic dendritic beading and loss of spines within minutes, in the absence of neuronal death or changes in systemic oxygenation. Although the dendritic beading improved rapidly after the seizures, the spine loss recovered only partially over a 24 h period. Kainate seizures also resulted in activation of the actin-depolymerizing factor, cofilin, and a corresponding decrease in filamentous actin, indicating that depolymerization of actin may mediate the morphological dendritic changes. Finally, an inhibitor of the calcium-dependent phosphatase, calcineurin, antagonized the effects of seizures on cofilin activation and spine morphology. These dramatic in vivo findings demonstrate that seizures produce acute dendritic injury in neocortical neurons via calcineurin-dependent regulation of the actin cytoskeleton, suggesting novel therapeutic targets for preventing seizure-induced brain injury.
Journal of Clinical Investigation | 2008
Lin Huao Xu; Nicholas Rensing; Xiao-Feng Yang; Hai Xia Zhang; Liu Lin Thio; Steven M. Rothman; Aryan Weisenfeld; Michael Wong; Kelvin A. Yamada
Leptin is a hormone that reduces excitability in some hypothalamic neurons via leptin receptor activation of the JAK2 and PI3K intracellular signaling pathways. We hypothesized that leptin receptor activation in other neuronal subtypes would have anticonvulsant activity and that intranasal leptin delivery would be an effective route of administration. We tested leptins anticonvulsant action in 2 rodent seizure models by directly injecting it into the cortex or by administering it intranasally. Focal seizures in rats were induced by neocortical injections of 4-aminopyridine, an inhibitor of voltage-gated K+ channels. These seizures were briefer and less frequent upon coinjection of 4-aminopyridine and leptin. In mice, intranasal administration of leptin produced elevated brain and serum leptin levels and delayed the onset of chemical convulsant pentylenetetrazole-induced generalized convulsive seizures. Leptin also reduced neuronal spiking in an in vitro seizure model. Leptin inhibited alpha-amino-3-hydroxy-5-methyl-4-isoxazole proprionic acid (AMPA) receptor-mediated synaptic transmission in mouse hippocampal slices but failed to inhibit synaptic responses in slices from leptin receptor-deficient db/db mice. JAK2 and PI3K antagonists prevented leptin inhibition of AMPAergic synaptic transmission. We conclude that leptin receptor activation and JAK2/PI3K signaling may be novel targets for anticonvulsant treatments. Intranasal leptin administration may have potential as an acute abortive treatment for convulsive seizures in emergency situations.
Pediatric Research | 2004
Kelvin A. Yamada; Nicholas Rensing; Yukitoshi Izumi; Gabriel A. de Erausquin; Vered Gazit; David A. Dorsey; Daniel G. Herrera
Mechanisms underlying cognitive dysfunction in young diabetic children are poorly understood, and may include synaptic dysfunction from insulin-induced hypoglycemia. We developed a model of repetitive insulin-induced hypoglycemia in young rats and examined hippocampal long-term potentiation, an electrophysiologic assay of synaptic plasticity, 3–5 d after the last hypoglycemic event. Three hypoglycemic events between postnatal d 21–25 produced modest cortical (17 ± 2.9 dead neurons per section in parasagittal cortex), but not hippocampal, neuron death quantified by Fluoro-Jade B staining. There was no change in neurogenesis in the hippocampal dentate granule cell region by quantification of bromodeoxyuridine incorporation. Although normal baseline hippocampal synaptic responses were elicited from hippocampal slices from hypoglycemic animals, long-term synaptic potentiation could not be induced in hippocampal slices from rats subjected to hypoglycemia. These results suggest that repetitive hypoglycemia in the developing brain can cause selective impairment of synaptic plasticity in the absence of cell death, and without complete disruption of basal synaptic transmission. We speculate that impaired synaptic plasticity in the hippocampus caused by repetitive hypoglycemia could underlie memory and cognitive deficits observed in young diabetic children, and that cortical neuron death caused by repetitive hypoglycemia in the developing brain may contribute to other neurologic, cognitive, and psychological problems sometimes encountered in diabetic children.
Neuroscience Letters | 2005
Kelvin A. Yamada; Nicholas Rensing; Liu Lin Thio
Hypoglycemia is an important complication of insulin treatment in diabetic children and may contribute to lasting cognitive impairment. Previous studies demonstrated that 21-day-old rats (P21) subjected to brief, repetitive episodes of hypoglycemia sustain cortical neuronal death. The developing brain is capable of utilizing alternative energy substrates acetoacetate and beta-hydroxybutyrate. In these studies we tested the hypothesis that the developing brain adapted to ketone utilization and provided with ketones during hypoglycemia by eating a ketogenic diet would sustain less brain injury compared to littermates fed a standard diet. Supporting this hypothesis, P21 rats weaned to a ketogenic diet and subjected to insulin-induced hypoglycemia at P25 had significantly less neuronal death than rats on a standard diet. This animal model may provide insight into the determinants influencing the brains susceptibility to hypoglycemic injury.
PLOS ONE | 2013
Bo Zhang; Sharon S. McDaniel; Nicholas Rensing; Michael Wong
Epilepsy is a common neurological disorder and cause of significant morbidity and mortality. Although antiseizure medication is the first-line treatment for epilepsy, currently available medications are ineffective in a significant percentage of patients and have not clearly been demonstrated to have disease-specific effects for epilepsy. While seizures are usually intractable to medication in tuberous sclerosis complex (TSC), a common genetic cause of epilepsy, vigabatrin appears to have unique efficacy for epilepsy in TSC. While vigabatrin increases gamma-aminobutyric acid (GABA) levels, the precise mechanism of action of vigabatrin in TSC is not known. In this study, we investigated the effects of vigabatrin on epilepsy in a knock-out mouse model of TSC and tested the novel hypothesis that vigabatrin inhibits the mammalian target of rapamycin (mTOR) pathway, a key signaling pathway that is dysregulated in TSC. We found that vigabatrin caused a modest increase in brain GABA levels and inhibited seizures in the mouse model of TSC. Furthermore, vigabatrin partially inhibited mTOR pathway activity and glial proliferation in the knock-out mice in vivo, as well as reduced mTOR pathway activation in cultured astrocytes from both knock-out and control mice. This study identifies a potential novel mechanism of action of an antiseizure medication involving the mTOR pathway, which may account for the unique efficacy of this drug for a genetic epilepsy.
Pediatric Research | 2006
Liu Lin Thio; Ebru Erbayat-Altay; Nicholas Rensing; Kelvin A. Yamada
The ketogenic diet (KD) is an efficacious therapy for medically refractory childhood epilepsy that also slows weight gain. We tested the hypothesis that the KD slows weight gain via neurohormones involved in energy homeostasis. We found that juvenile rodents fed a KD had slower weight gain than those fed a standard diet (SD). Rats fed a KD had higher serum leptin levels and lower insulin levels compared with those fed an SD. We investigated the increase in leptin further because this change was the only one consistent with slower weight gain. Although rats fed the SD experienced slower weight gain when calorie restricted, they had serum leptin levels similar to those fed the SD ad libitum. Furthermore, leptin deficient (ob/ob) and leptin receptor deficient (db/db) mice did not show slower weight gain on the KD. All animals on the KD had elevated serum β-hydroxybutyrate (βHB) levels. Thus, ketosis is insufficient and a functioning leptin signaling system appears necessary for the KD to slow weight gain. The increase in leptin may contribute to the anticonvulsant effects of the KD.
Annals of Neurology | 2005
Nicholas Rensing; Yannan Ouyang; Xiao-Feng Yang; Kelvin A. Yamada; Steven M. Rothman; Michael Wong
Epilepsy is associated with significant neurological morbidity, including learning disabilities, motor deficits, and behavioral problems. Although the causes of neurological dysfunction in epilepsy are multifactorial, accumulating evidence indicates that seizures in themselves may directly cause brain injury. Although it is clear that seizures can result in neuronal death, it is likely that under some circumstances seizures can induce more subtle functional or structural alterations in neurons. We induced focal neocortical seizures with 4‐aminopyridine in transgenic mice expressing green fluorescent protein in cortical neurons and sequentially imaged individual dendrites in living animals with two‐photon laser‐scanning microscopy to determine whether these seizures caused acute alterations in dendritic spine morphology. No dendritic alterations were observed in anesthetized animals during electrographic seizures over a 3‐hour period. Similarly, in unanesthetized mice, low‐stage, clinical electrographic seizures had minimal effect on dendritic spines. More severe, high‐stage seizures in unanesthetized mice were associated with a moderate loss of spines and dendritic swelling, but this effect may have been contingent on a synergistic action of phototoxicity from the imaging method itself. Overall, our results suggest that most neocortical seizures have minimal acute effects on dendrites over several hours, but may predispose to dendritic injury under extreme conditions. Ann Neurol 2005