Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nicholas W. Bellono is active.

Publication


Featured researches published by Nicholas W. Bellono.


Cell | 2017

Enterochromaffin Cells Are Gut Chemosensors that Couple to Sensory Neural Pathways

Nicholas W. Bellono; James R. Bayrer; Duncan B. Leitch; Joel Castro; Chuchu Zhang; Tracey A. O’Donnell; Stuart M. Brierley; Holly A. Ingraham; David Julius

Dietary, microbial, and inflammatory factors modulate the gut-brain axis and influence physiological processes ranging from metabolism to cognition. The gut epithelium is a principal site for detecting such agents, but precisely how it communicates with neural elements is poorly understood. Serotonergic enterochromaffin (EC) cells are proposed to fulfill this role by acting as chemosensors, but understanding how these rare and unique cell types transduce chemosensory information to the nervous system has been hampered by their paucity and inaccessibility to single-cell measurements. Here, we circumvent this limitation by exploiting cultured intestinal organoids together with single-cell measurements to elucidate intrinsic biophysical, pharmacological, and genetic properties of EC cells. We show that EC cells express specific chemosensory receptors, are electrically excitable, and modulate serotonin-sensitive primary afferent nerve fibers via synaptic connections, enabling them to detect and transduce environmental, metabolic, and homeostatic information from the gut directly to the nervous system.


Proceedings of the National Academy of Sciences of the United States of America | 2013

UV light phototransduction activates transient receptor potential A1 ion channels in human melanocytes

Nicholas W. Bellono; Laura G. Kammel; Anita L. Zimmerman; Elena Oancea

Human skin is constantly exposed to solar ultraviolet radiation (UVR), the most prevalent environmental carcinogen. Humans have the unique ability among mammals to respond to UVR by increasing their skin pigmentation, a protective process driven by melanin synthesis in epidermal melanocytes. The molecular mechanisms used by melanocytes to detect and respond to long-wavelength UVR (UVA) are not well understood. We recently identified a UVA phototransduction pathway in melanocytes that is mediated by G protein-coupled receptors and leads to rapid calcium mobilization. Here we report that in human epidermal melanocytes physiological doses of UVR activate a retinal-dependent current mediated by transient receptor potential A1 (TRPA1) ion channels. The TRPA1 photocurrent is UVA-specific and requires G protein and phospholipase C signaling, thus contributing to UVA-induced calcium responses to mediate downstream cellular effects and providing evidence for TRPA1 function in mammalian phototransduction. Remarkably, TRPA1 activation is required for the UVR-induced and retinal-dependent early increase in cellular melanin. Our results show that TRPA1 is essential for a unique extraocular phototransduction pathway in human melanocytes that is activated by physiological doses of UVR and results in early melanin synthesis.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Long-term potentiation of glycinergic synapses triggered by interleukin 1β

Anda M. Chirila; Travis E. Brown; Rachel A. Bishop; Nicholas W. Bellono; Francesco G. Pucci; Julie A. Kauer

Significance Whereas glycine is one of the three major neurotransmitters in the central nervous system, glycinergic synapses are relatively understudied in intact tissue. Here we provide the first evidence of long-term potentiation (LTP) at mammalian glycinergic synapses. In the spinal cord dorsal horn, glycinergic synapses on inhibitory GABAergic neurons exhibit LTP, occurring rapidly after exposure to the inflammatory cytokine interleukin-1 beta. This form of LTP is mediated by postsynaptic alterations in glycine receptor function. We further show that peripheral inflammation in vivo triggers glycine receptor LTP. Blocking glycine receptor LTP may represent a useful therapeutic strategy in the treatment of inflammatory pain. Long-term potentiation (LTP) is a persistent increase in synaptic strength required for many behavioral adaptations, including learning and memory, visual and somatosensory system functional development, and drug addiction. Recent work has suggested a role for LTP-like phenomena in the processing of nociceptive information in the dorsal horn and in the generation of central sensitization during chronic pain states. Whereas LTP of glutamatergic and GABAergic synapses has been characterized throughout the central nervous system, to our knowledge there have been no reports of LTP at mammalian glycinergic synapses. Glycine receptors (GlyRs) are structurally related to GABAA receptors and have a similar inhibitory role. Here we report that in the superficial dorsal horn of the spinal cord, glycinergic synapses on inhibitory GABAergic neurons exhibit LTP, occurring rapidly after exposure to the inflammatory cytokine interleukin-1 beta. This form of LTP (GlyR LTP) results from an increase in the number and/or change in biophysical properties of postsynaptic glycine receptors. Notably, formalin-induced peripheral inflammation in vivo potentiates glycinergic synapses on dorsal horn neurons, suggesting that GlyR LTP is triggered during inflammatory peripheral injury. Our results define a previously unidentified mechanism that could disinhibit neurons transmitting nociceptive information and may represent a useful therapeutic target for the treatment of pain.


eLife | 2014

An intracellular anion channel critical for pigmentation

Nicholas W. Bellono; Iliana E. Escobar; Ariel J Lefkovith; Michael S. Marks; Elena Oancea

Intracellular ion channels are essential regulators of organellar and cellular function, yet the molecular identity and physiological role of many of these channels remains elusive. In particular, no ion channel has been characterized in melanosomes, organelles that produce and store the major mammalian pigment melanin. Defects in melanosome function cause albinism, characterized by vision and pigmentation deficits, impaired retinal development, and increased susceptibility to skin and eye cancers. The most common form of albinism is caused by mutations in oculocutaneous albinism II (OCA2), a melanosome-specific transmembrane protein with unknown function. Here we used direct patch-clamp of skin and eye melanosomes to identify a novel chloride-selective anion conductance mediated by OCA2 and required for melanin production. Expression of OCA2 increases organelle pH, suggesting that the chloride channel might regulate melanin synthesis by modulating melanosome pH. Thus, a melanosomal anion channel that requires OCA2 is essential for skin and eye pigmentation. DOI: http://dx.doi.org/10.7554/eLife.04543.001


The Journal of General Physiology | 2014

UV light activates a Gαq/11-coupled phototransduction pathway in human melanocytes.

Nicholas W. Bellono; Julia A. Najera; Elena Oancea

While short exposure to solar ultraviolet radiation (UVR) can elicit increased skin pigmentation, a protective response mediated by epidermal melanocytes, chronic exposure can lead to skin cancer and photoaging. However, the molecular mechanisms that allow human skin to detect and respond to UVR remain incompletely understood. UVR stimulates a retinal-dependent signaling cascade in human melanocytes that requires GTP hydrolysis and phospholipase C β (PLCβ) activity. This pathway involves the activation of transient receptor potential A1 (TRPA1) ion channels, an increase in intracellular Ca(2+), and an increase in cellular melanin content. Here, we investigated the identity of the G protein and downstream elements of the signaling cascade and found that UVR phototransduction is Gαq/11 dependent. Activation of Gαq/11/PLCβ signaling leads to hydrolysis of phosphatidylinositol (4,5)-bisphosphate (PIP2) to generate diacylglycerol (DAG) and inositol 1, 4, 5-trisphosphate (IP3). We found that PIP2 regulated TRPA1-mediated photocurrents, and IP3 stimulated intracellular Ca(2+) release. The UVR-elicited Ca(2+) response appears to involve both IP3-mediated release from intracellular stores and Ca(2+) influx through TRPA1 channels, showing the fast rising phase of the former and the slow decay of the latter. We propose that melanocytes use a UVR phototransduction mechanism that involves the activation of a Gαq/11-dependent phosphoinositide cascade, and resembles light phototransduction cascades of the eye.


Nature | 2017

Molecular basis of ancestral vertebrate electroreception

Nicholas W. Bellono; Duncan B. Leitch; David Julius

Elasmobranch fishes, including sharks, rays, and skates, use specialized electrosensory organs called ampullae of Lorenzini to detect extremely small changes in environmental electric fields. Electrosensory cells within these ampullae can discriminate and respond to minute changes in environmental voltage gradients through an unknown mechanism. Here we show that the voltage-gated calcium channel CaV1.3 and the big conductance calcium-activated potassium (BK) channel are preferentially expressed by electrosensory cells in little skate (Leucoraja erinacea) and functionally couple to mediate electrosensory cell membrane voltage oscillations, which are important for the detection of specific, weak electrical signals. Both channels exhibit unique properties compared with their mammalian orthologues that support electrosensory functions: structural adaptations in CaV1.3 mediate a low-voltage threshold for activation, and alterations in BK support specifically tuned voltage oscillations. These findings reveal a molecular basis of electroreception and demonstrate how discrete evolutionary changes in ion channel structure facilitate sensory adaptation.


Scientific Reports | 2016

A melanosomal two-pore sodium channel regulates pigmentation

Nicholas W. Bellono; Iliana E. Escobar; Elena Oancea

Intracellular organelles mediate complex cellular functions that often require ion transport across their membranes. Melanosomes are organelles responsible for the synthesis of the major mammalian pigment melanin. Defects in melanin synthesis result in pigmentation defects, visual deficits, and increased susceptibility to skin and eye cancers. Although genes encoding putative melanosomal ion transporters have been identified as key regulators of melanin synthesis, melanosome ion transport and its contribution to pigmentation remain poorly understood. Here we identify two-pore channel 2 (TPC2) as the first reported melanosomal cation conductance by directly patch-clamping skin and eye melanosomes. TPC2 has been implicated in human pigmentation and melanoma, but the molecular mechanism mediating this function was entirely unknown. We demonstrate that the vesicular signaling lipid phosphatidylinositol bisphosphate PI(3,5)P2 modulates TPC2 activity to control melanosomal membrane potential, pH, and regulate pigmentation.


Archives of Biochemistry and Biophysics | 2014

Ion transport in pigmentation

Nicholas W. Bellono; Elena Oancea

Skin melanocytes and ocular pigment cells contain specialized organelles called melanosomes, which are responsible for the synthesis of melanin, the major pigment in mammals. Defects in the complex mechanisms involved in melanin synthesis and regulation result in vision and pigmentation deficits, impaired development of the visual system, and increased susceptibility to skin and eye cancers. Ion transport across cellular membranes is critical for many biological processes, including pigmentation, but the molecular mechanisms by which it regulates melanin synthesis, storage, and transfer are not understood. In this review we first discuss ion channels and transporters that function at the plasma membrane of melanocytes; in the second part we consider ion transport across the membrane of intracellular organelles, with emphasis on melanosomes. We discuss recently characterized lysosomal and endosomal ion channels and transporters associated with pigmentation phenotypes. We then review the evidence for melanosomal channels and transporters critical for pigmentation, discussing potential molecular mechanisms mediating their function. The studies investigating ion transport in pigmentation physiology open new avenues for future research and could reveal novel molecular mechanisms underlying melanogenesis.


Channels | 2013

UV light phototransduction depolarizes human melanocytes.

Nicholas W. Bellono; Elena Oancea

Exposure of human skin to low doses of solar UV radiation (UVR) causes increased pigmentation, while chronic exposure is a powerful risk factor for skin cancers. The mechanisms mediating UVR detection in skin, however, remain poorly understood. Our recent studies revealed that UVR activates a retinal-dependent G protein-coupled signaling pathway in melanocytes. This phototransduction pathway leads to the activation of transient receptor potential A1 (TRPA1) ion channels, elevation of intracellular calcium (Ca2+) and rapid increase in cellular melanin content. Here we report that physiological doses of solar-like UVR elicit a retinal-dependent membrane depolarization in human epidermal melanocytes. This transient depolarization correlates with delayed inactivation time of the UVR-evoked photocurrent and with sustained Ca2+ responses required for early melanin synthesis. Thus, the cellular depolarization induced by UVR phototransduction in melanocytes is likely to be a critical signaling mechanism necessary for the protective response represented by increased melanin content.


Nature | 2018

Molecular tuning of electroreception in sharks and skates

Nicholas W. Bellono; Duncan B. Leitch; David Julius

Ancient cartilaginous vertebrates, such as sharks, skates and rays, possess specialized electrosensory organs that detect weak electric fields and relay this information to the central nervous system1–4. Sharks exploit this sensory modality for predation, whereas skates may also use it to detect signals from conspecifics5. Here we analyse shark and skate electrosensory cells to determine whether discrete physiological properties could contribute to behaviourally relevant sensory tuning. We show that sharks and skates use a similar low threshold voltage-gated calcium channel to initiate cellular activity but use distinct potassium channels to modulate this activity. Electrosensory cells from sharks express specially adapted voltage-gated potassium channels that support large, repetitive membrane voltage spikes capable of driving near-maximal vesicular release from elaborate ribbon synapses. By contrast, skates use a calcium-activated potassium channel to produce small, tunable membrane voltage oscillations that elicit stimulus-dependent vesicular release. We propose that these sensory adaptations support amplified indiscriminate signal detection in sharks compared with selective frequency detection in skates, potentially reflecting the electroreceptive requirements of these elasmobranch species. Our findings demonstrate how sensory systems adapt to suit the lifestyle or environmental niche of an animal through discrete molecular and biophysical modifications.Shark and skate electrosensory cells use specific potassium channels to support either indiscriminate detection of electrical stimuli or selective frequency tuning, respectively, demonstrating adaptation of sensory systems through discrete molecular modifications.

Collaboration


Dive into the Nicholas W. Bellono's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Julius

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Allen C. Myers

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ariel J Lefkovith

Children's Hospital of Philadelphia

View shared research outputs
Researchain Logo
Decentralizing Knowledge