Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nicholas W. Gillham is active.

Publication


Featured researches published by Nicholas W. Gillham.


The Plant Cell | 1997

Epigenetic silencing of a foreign gene in nuclear transformants of Chlamydomonas.

Heriberto D. Cerutti; Anita Johnson; Nicholas W. Gillham; John E. Boynton

The unstable expression of introduced genes poses a serious problem for the application of transgenic technology in plants. In transformants of the unicellular green alga Chlamydomonas reinhardtii, expression of a eubacterial aadA gene, conferring spectinomycin resistance, is transcriptionally suppressed by a reversible epigenetic mechanism(s). Variations in the size and frequency of colonies surviving on different concentrations of spectinomycin as well as the levels of transcriptional activity of the introduced transgene(s) suggest the existence of intermediate expression states in genetically identical cells. Gene silencing does not correlate with methylation of the integrated DNA and does not involve large alterations in its chromatin structure, as revealed by digestion with restriction endonucleases and DNase I. Transgene repression is enhanced by lower temperatures, similar to position effect variegation in Drosophila. By analogy to epigenetic phenomena in several eukaryotes, our results suggest a possible role for (hetero)chromatic chromosomal domains in transcriptional inactivation.


Molecular Genetics and Genomics | 1993

Further characterization of the respiratory deficient dum-1 mutation of Chlamydomonas reinhardtii and its use as a recipient for mitochondrial transformation

Barbara L. Randolph-Anderson; John E. Boynton; Nicholas W. Gillham; Elizabeth H. Harris; Anita Johnson; Marie-Pierre Dorthu; René F. Matagne

SummaryThe respiratory deficient dum-1 mutant of Chlamydomonas reinhardtii fails to grow in the dark because of a terminal 1.5 kb deletion in the linear 15.8 kb mitochondrial genome, which affects the apocytochrome b (CYB) gene. In contrast to the wild type where only mitochondrial genomes of monomer length are observed, the dum-1 genomes are present as a mixture of monomer and dimer length molecules. The mutant dimers appear to result from head-to-head fusions of two deleted molecules. Furthermore, mitochondrial genomes of dum-1 were also found to be unstable, with the extent of the deletion varying among single cell clones from the original mutant population. The dum-1 mutant also segregates, at a frequency of ca. 4% per generation, lethal minute colonies in which the original deletion now extends at least into the adjacent gene encoding subunit four of NAD dehydrogenase (ND4). We have used the dum-1 mutant as a recipient to demonstrate stable mitochondrial transformation in C. reinhardtii employing the biolistic method. After 4 to 8 weeks dark incubation, a total of 22 respiratory competent colonies were isolated from plates of dum-1 cells bombarded with C. reinhardtii mitochondrial DNA (frequency 7.3 × 10−7) and a single colony was isolated from plates bombarded with C. smithii mitochondrial DNA (frequency 0.8 × 10−7). No colonies were seen on control plates (frequency < 0.96 × 10−9). All transformants grew normally in the dark on acetate media; 22 transformants were homoplasmic for the wild-type mitochondrial genome typical of the C. reinhardtii donor. The single transformant obtained from the C. smithii donor had a recombinant mitochondrial genome containing the donor CYB gene and the diagnostic HpaI and XbaI restriction sites in the gene encoding subunit I of cytochrome oxidase (COI) from the C. reinhardtii recipient. The characteristic deletion fragments of the dum-1 recipient were not detected in any of the transformants.


Methods in Enzymology | 1993

Chloroplast transformation in Chlamydomonas

John E. Boynton; Nicholas W. Gillham

Publisher Summary Chloroplast transformation provides the technology for dissecting the function of specific chloroplast regulatory sequences and probing structure or function relationships of individual chloroplast-encoded proteins by examining in vivo the consequences of in vitro mutations. This methodology also offers the opportunity for ascertaining the functions encoded by chloroplast open reading frame (ORF) sequences. Such investigations are already providing new approaches to the study of gene regulation and protein function, as the mutations created can be evaluated in vivo in their normal location in the chloroplast genome without complications resulting from position effects, which can arise in the case of nonhomologous recombination. In addition, successful transformation of higher plant chloroplasts brings with it the hope that these organelles may eventually be engineered for practical purposes, such as is currently being done with nuclear genes in important crop plants.


Molecular Genetics and Genomics | 1998

Shine-Dalgarno-like sequences are not required for translation of chloroplast mRNAs in Chlamydomonas reinhardtii chloroplasts or in Escherichia coli.

David C. Fargo; M. Zhang; Nicholas W. Gillham; John E. Boynton

Abstract Initiation of translation in Escherichia coli and related eubacteria involves well-defined interactions between a conserved Shine-Dalgarno (SD) sequence immediately upstream of the initiation codon in the mRNA leader and an equally conserved anti-SD sequence at the 3′ end of the 16S rRNA. SD-like sequences found in the leaders of many, but not all, mRNAs from cyanobacteria and chloroplasts are hypervariable in location, size, and base composition compared to those in E. coli, while anti-SD sequences in the respective 16S rRNAs remain highly conserved. We have examined the function of the SD-like sequences found in the leaders of four chloroplast genes of the green alga Chlamydomonas reinhardtii using replacement mutagenesis to eliminate complementarity with the anti-SD sequences and insertion of canonical SD sequences (GGAGG) at positions −9 to −5 relative to the initiation codon. Promoter-leader regions of the atpB, atpE, rps4, and rps7 genes representing the diversity of chloroplast SD-like sequences were fused to aadA and uidA reporter genes encoding spectinomycin resistance and GUS activity respectively. Analysis of chloroplast transformants of C. reinhardtii and transformants of E. coli carrying the wild-type and mutant reporter constructs revealed that mutagenic replacement of the putative SD sequences had no effect on the expression of either the aadA or uidA reporter genes. Chloroplast transformants with the canonical SD sequence also showed no differences in reporter gene expression, whereas expression of the reporter genes was increased by 10 to 30% in the E. coli transformants. Collectively our results suggest that even though SD-dependent initiation predominates in E. coli, this bacterium also has the capacity to initiate translation by an SD-independent mechanism. In contrast, plant chloroplasts, and very probably their cyanobacterial ancestors, appear to have adopted the SD-independent mechanism for translational initiation of most mRNAs.


Molecular and Cellular Biology | 1995

Inhibition of chloroplast DNA recombination and repair by dominant negative mutants of Escherichia coli RecA.

Heriberto D. Cerutti; Anita Johnson; John E. Boynton; Nicholas W. Gillham

The occurrence of homologous DNA recombination in chloroplasts is well documented, but little is known about the molecular mechanisms involved or their biological significance. The endosymbiotic origin of plastids and the recent finding of an Arabidopsis nuclear gene, encoding a chloroplast-localized protein homologous to Escherichia coli RecA, suggest that the plastid recombination system is related to its eubacterial counterpart. Therefore, we examined whether dominant negative mutants of the E. coli RecA protein can interfere with the activity of their putative homolog in the chloroplast of the unicellular green alga Chlamydomonas reinhardtii. Transformants expressing these mutant RecA proteins showed reduced survival rates when exposed to DNA-damaging agents, deficient repair of chloroplast DNA, and diminished plastid DNA recombination. These results strongly support the existence of a RecA-mediated recombination system in chloroplasts. We also found that the wild-type E. coli RecA protein enhances the frequency of plastid DNA recombination over 15-fold, although it has no effect on DNA repair or cell survival. Thus, chloroplast DNA recombination appears to be limited by the availability of enzymes involved in strand exchange rather than by the level of initiating DNA substrates. Our observations suggest that a primary biological role of the recombination system in plastids is in the repair of their DNA, most likely needed to cope with damage due to photooxidation and other environmental stresses. This hypothesis could explain the evolutionary conservation of DNA recombination in chloroplasts despite the predominantly uniparental inheritance of their genomes.


Plant Molecular Biology | 1998

Isolation and characterization of a mutant protoporphyrinogen oxidase gene from Chlamydomonas reinhardtii conferring resistance to porphyric herbicides

Barbara L. Randolph-Anderson; Ryo Sato; Anita Johnson; Elizabeth H. Harris; Charles R. Hauser; Kenji Oeda; Fumiharu Ishige; Shoichi Nishio; Nicholas W. Gillham; John E. Boynton

In plant and algal cells, inhibition of the enzyme protoporphyrinogen oxidase (Protox) by the N-phenyl heterocyclic herbicide S-23142 causes massive protoporphyrin IX accumulation, resulting in membrane deterioration and cell lethality in the light. We have identified a 40.4 kb genomic fragment encoding S-23142 resistance by using transformation to screen an indexed cosmid library made from nuclear DNA of the dominant rs-3 mutant of Chlamydomonas reinhardtii. A 10.0 kb HindIII subclone (Hind10) of this insert yields a high frequency of herbicide-resistant transformants, consistent with frequent non-homologous integration of the complete RS-3 gene. A 3.4 kb XhoI subfragment (Xho3.4) yields rare herbicide-resistant transformants, suggestive of homologous integration of a portion of the coding sequence containing the mutation. Molecular and genetic analysis of the transformants localized the rs-3 mutation conferring S-23142 resistance to the Xho3.4 fragment, which was found to contain five putative exons encoding a protein with identity to the C-terminus of the Arabidopsis Protox enzyme. A cDNA clone containing a 1698 bp ORF that encodes a 563 amino acid peptide with 51% and 53% identity to Arabidopsis and tobacco Protox I, respectively, was isolated from a wild-type C. reinhardtii library. Comparison of the wild-type cDNA sequence with the putative exon sequences present in the mutant Xho3.4 fragment revealed a G→A change at 291 in the first putative exon, resulting in a Val→Met substitution at a conserved position equivalent to Val-389 of the wild-type C. reinhardtii cDNA. A sequence comparison of genomic Hind10 fragments from C. reinhardtii rs-3 and its wild-type progenitor CC-407 showed this G→A change at the equivalent position (5751) within exon 10.


Plant Molecular Biology | 1984

Molecular and genetic analysis of the chloroplast ATPase of chlamydomonas

Jeffrey P. Woessner; Arlette Masson; Elizabeth H. Harris; Pierre Bennoun; Nicholas W. Gillham; John E. Boynton

We have carried out a molecular and genetic analysis of the chloroplast ATPase in Chlamydomonas reinhardtii. Recombination and complementation studies on 16 independently isolated chloroplast mutations affecting this complex demonstrated that they represent alleles in five distinct chloroplast genes. One of these five, the ac-u-c locus, has been positioned on the physical map of the chloroplast DNA by deletion mutations. The use of cloned spinach chloroplast ATPase genes in heterologous hybridizations to Chlamydomonas chloroplast DNA has allowed us to localize three or possibly four of the ATPase genes on the physical map. The beta and probably the epsilon subunit genes of Chlamydomonas CF1 lie within the same region of chloroplast DNA as the ac-u-c locus, while the alpha and proteolipid subunit genes appear to map adjacent to one another approximately 20 kbp away. Unlike the arrangement in higher plants, these two pairs of genes are separated from each other by an inverted repeat.


Journal of Biological Chemistry | 1996

Translational Regulation of Chloroplast Genes PROTEINS BINDING TO THE 5′-UNTRANSLATED REGIONS OF CHLOROPLAST mRNAs IN CHLAMYDOMONAS REINHARDTII

Charles R. Hauser; Nicholas W. Gillham; John E. Boynton

We have examined the effects of illumination, carbon source, and levels of chloroplast protein synthesis on trans-acting proteins that bind to the leaders of five representative chloroplast mRNAs. The accumulation of these five chloroplast mRNAs and the proteins they encode were measured in cells grown under identical conditions. Extracts from all cell types examined contain a minimum set of six chloroplast 5′-untranslated region (UTR)-binding proteins (81, 62, 56, 47, 38, and 15 kDa). Fractionation results suggest that multiple forms of the 81-, 62-, and 47-kDa proteins may exist. A 36-kDa protein was found in all cells except those deficient in chloroplast protein synthesis. Binding of the 81-, 47-, and 38-kDa proteins to the rps12 leader is effectively competed by the atpB or rbcL 5′-UTRs, indicating that the same proteins bind to all three leaders. In contrast, these three proteins do not bind to the nuclear-encoded α-1 tubulin leader, which bound novel proteins of 110, 70, and 43 kDa. Cis-acting sequences within the 5′-UTRs of two chloroplast mRNAs (rps7 and atpB) have been identified which are protected from digestion by RNase T1 by extracts enriched for the 81-, 47-, and 38-kDa proteins.


Molecular Genetics and Genomics | 1991

Targeted disruption of chloroplast genes in Chlamydomonas reinhardtii

Scott M. Newman; Nicholas W. Gillham; Elizabeth H. Harris; Anita Johnson; John E. Boynton

SummaryWe have developed an efficient procedure for the disruption of Chlamydomonas chloroplast genes. Wild-type C. reinhardtii cells were bombarded with microprojectiles coated with a mixture of two plasmids, one encoding selectable, antibiotic-resistance mutations in the 16S ribosomal RNA gene and the other containing either the atpB or rbcL photosynthetic gene inactivated by an insertion of 0.48 kb of yeast DNA in the coding sequence. Antibiotic-resistant transformants were selected under conditions permissive for growth of nonphotosynthetic mutants. Approximately half of these transformants were initially heteroplasmic for copies of the disrupted atpB or rbcL genes integrated into the recipient chloroplast genome but still retained photosynthetic competence. A small fraction of the transformants (1.1% for atpB; 4.3% for rbcL) were nonphotosynthetic and homoplasmic for the disrupted gene at the time they were isolated. Single cell cloning of the initially heteroplasmic transformants also yielded nonphotosynthetic segregants that were homoplasmic for the disrupted gene. Polypeptide products of the disrupted atpB and rbcL genes could not be detected using immunoblotting techniques. We believe that any nonessential Chlamydomonas chloroplast gene, such as those involved in photosynthesis, should be amenable to gene disruption by cotransformation. The method should prove useful for the introduction of site-specific mutations into chloroplast genes and flanking regulatory sequences with a view to elucidating their function.


Plasmid | 1982

Mutants of Chlamydomonas reinhardtii with physical alterations in their chloroplast DNA

Alan M. Myers; D.M. Grant; Douglas K. Rabert; Elizabeth H. Harris; John E. Boynton; Nicholas W. Gillham

Abstract We have isolated nonphotosynthetic (acetate-requiring) mutants with physical alterations in chloroplast DNA following growth of haploid cells in the chloroplast specific mutagen 5-fluorodeoxyuridine (FdUrd) or treatment of FdUrd-grown diploid cells with X rays. About one-third of the nonphotosynthetic mutations resulting from FdUrd treatment alone show simple deletions. All eight of the mutants examined so far which were obtained with FdUrd plus X rays have deletions that are accompanied by rearrangements, including inversions or duplications. All the alterations extend into one of the two inverted repeat regions of the chloroplast genome which contain the ribosomal RNA cistrons. However, Southern hybridization experiments reveal that the rRNA cistrons are not deleted but instead are contained in new fragments. The relocated rRNA cistrons appear to be functional, since the mutants have normal levels of chloroplast ribosomes. In most cases the deletions and rearrangements are symmetrical and affect both inverted repeats in a similar fashion. An exception is the mutant ac-u-c-2–43, which lacks one inverted repeat region almost completely, including an entire set of rRNA genes. Three additional mutants, which fail to recombine with ac-u-c-2–43 to give photosynthetically competent cells, have smaller deletions in the same region of the genome. These physical mapping studies have allowed us to place the ac-u-c locus itself in a region of unique sequence DNA in a fragment, Ba10, which also includes the right-hand end of one inverted repeat.

Collaboration


Dive into the Nicholas W. Gillham's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge