Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nick Dee is active.

Publication


Featured researches published by Nick Dee.


Nature | 2012

An anatomically comprehensive atlas of the adult human brain transcriptome

Michael Hawrylycz; Ed Lein; Angela L. Guillozet-Bongaarts; Elaine H. Shen; Lydia Ng; Jeremy A. Miller; Louie N. van de Lagemaat; Kimberly A. Smith; Amanda Ebbert; Zackery L. Riley; Chris Abajian; Christian F. Beckmann; Amy Bernard; Darren Bertagnolli; Andrew F. Boe; Preston M. Cartagena; M. Mallar Chakravarty; Mike Chapin; Jimmy Chong; Rachel A. Dalley; Barry Daly; Chinh Dang; Suvro Datta; Nick Dee; Tim Dolbeare; Vance Faber; David Feng; David Fowler; Jeff Goldy; Benjamin W. Gregor

Neuroanatomically precise, genome-wide maps of transcript distributions are critical resources to complement genomic sequence data and to correlate functional and genetic brain architecture. Here we describe the generation and analysis of a transcriptional atlas of the adult human brain, comprising extensive histological analysis and comprehensive microarray profiling of ∼900 neuroanatomically precise subdivisions in two individuals. Transcriptional regulation varies enormously by anatomical location, with different regions and their constituent cell types displaying robust molecular signatures that are highly conserved between individuals. Analysis of differential gene expression and gene co-expression relationships demonstrates that brain-wide variation strongly reflects the distributions of major cell classes such as neurons, oligodendrocytes, astrocytes and microglia. Local neighbourhood relationships between fine anatomical subdivisions are associated with discrete neuronal subtypes and genes involved with synaptic transmission. The neocortex displays a relatively homogeneous transcriptional pattern, but with distinct features associated selectively with primary sensorimotor cortices and with enriched frontal lobe expression. Notably, the spatial topography of the neocortex is strongly reflected in its molecular topography—the closer two cortical regions, the more similar their transcriptomes. This freely accessible online data resource forms a high-resolution transcriptional baseline for neurogenetic studies of normal and abnormal human brain function.


Nature | 2014

Transcriptional landscape of the prenatal human brain

Jeremy A. Miller; Song Lin Ding; Susan M. Sunkin; Kimberly A. Smith; Lydia Ng; Aaron Szafer; Amanda Ebbert; Zackery L. Riley; Joshua J. Royall; Kaylynn Aiona; James M. Arnold; Crissa Bennet; Darren Bertagnolli; Krissy Brouner; Stephanie Butler; Shiella Caldejon; Anita Carey; Christine Cuhaciyan; Rachel A. Dalley; Nick Dee; Tim Dolbeare; Benjamin Facer; David Feng; Tim P. Fliss; Garrett Gee; Jeff Goldy; Lindsey Gourley; Benjamin W. Gregor; Guangyu Gu; Robert Howard

The anatomical and functional architecture of the human brain is mainly determined by prenatal transcriptional processes. We describe an anatomically comprehensive atlas of the mid-gestational human brain, including de novo reference atlases, in situ hybridization, ultra-high-resolution magnetic resonance imaging (MRI) and microarray analysis on highly discrete laser-microdissected brain regions. In developing cerebral cortex, transcriptional differences are found between different proliferative and post-mitotic layers, wherein laminar signatures reflect cellular composition and developmental processes. Cytoarchitectural differences between human and mouse have molecular correlates, including species differences in gene expression in subplate, although surprisingly we find minimal differences between the inner and outer subventricular zones even though the outer zone is expanded in humans. Both germinal and post-mitotic cortical layers exhibit fronto-temporal gradients, with particular enrichment in the frontal lobe. Finally, many neurodevelopmental disorder and human-evolution-related genes show patterned expression, potentially underlying unique features of human cortical formation. These data provide a rich, freely-accessible resource for understanding human brain development.


Neuron | 2014

A High-Resolution Spatiotemporal Atlas of Gene Expression of the Developing Mouse Brain

Carol L. Thompson; Lydia Ng; Vilas Menon; Salvador Martinez; Chang-Kyu Lee; Katie J. Glattfelder; Susan M. Sunkin; Alex Henry; Christopher Lau; Chinh Dang; Raquel Garcia-Lopez; Almudena Martinez-Ferre; Ana Pombero; John L.R. Rubenstein; Wayne Wakeman; John G. Hohmann; Nick Dee; Andrew Sodt; Rob Young; Kimberly A. Smith; Thuc-Nghi Nguyen; Jolene Kidney; Leonard Kuan; Andreas Jeromin; Ajamete Kaykas; Jeremy A. Miller; Damon T. Page; Geri Orta; Amy Bernard; Zackery L. Riley

To provide a temporal framework for the genoarchitecture of brain development, we generated in situ hybridization data for embryonic and postnatal mouse brain at seven developmental stages for ∼2,100 genes, which were processed with an automated informatics pipeline and manually annotated. This resource comprises 434,946 images, seven reference atlases, an ontogenetic ontology, and tools to explore coexpression of genes across neurodevelopment. Gene sets coinciding with developmental phenomena were identified. A temporal shift in the principles governing the molecular organization of the brain was detected, with transient neuromeric, plate-based organization of the brain present at E11.5 and E13.5. Finally, these data provided a transcription factor code that discriminates brain structures and identifies the developmental age of a tissue, providing a foundation for eventual genetic manipulation or tracking of specific brain structures over development. The resource is available as the Allen Developing Mouse Brain Atlas (http://developingmouse.brain-map.org).


Cell | 2014

Control of stress-induced persistent anxiety by an extra-amygdala septohypothalamic circuit

Todd E. Anthony; Nick Dee; Amy Bernard; Walter Lerchner; Nathaniel Heintz; David J. Anderson

The extended amygdala has dominated research on the neural circuitry of fear and anxiety, but the septohippocampal axis also plays an important role. The lateral septum (LS) is thought to suppress fear and anxiety through its outputs to the hypothalamus. However, this structure has not yet been dissected using modern tools. The type 2 CRF receptor (Crfr2) marks a subset of LS neurons whose functional connectivity we have investigated using optogenetics. Crfr2(+) cells include GABAergic projection neurons that connect with the anterior hypothalamus. Surprisingly, we find that these LS outputs enhance stress-induced behavioral measures of anxiety. Furthermore, transient activation of Crfr2(+) neurons promotes, while inhibition suppresses, persistent anxious behaviors. LS Crfr2(+) outputs also positively regulate circulating corticosteroid levels. These data identify a subset of LS projection neurons that promote, rather than suppress, stress-induced behavioral and endocrinological dimensions of persistent anxiety states and provide a cellular point of entry to LS circuitry.


Nature | 2016

A comprehensive transcriptional map of primate brain development

Trygve E. Bakken; Jeremy A. Miller; Song Lin Ding; Susan M. Sunkin; Kimberly A. Smith; Lydia Ng; Aaron Szafer; Rachel A. Dalley; Joshua J. Royall; Tracy Lemon; Sheila Shapouri; Kaylynn Aiona; James M. Arnold; Jeffrey L. Bennett; Darren Bertagnolli; Kristopher Bickley; Andrew F. Boe; Krissy Brouner; Stephanie Butler; Emi J. Byrnes; Shiella Caldejon; Anita Carey; Shelby Cate; Mike Chapin; Jefferey Chen; Nick Dee; Tsega Desta; Tim Dolbeare; Nadia Dotson; Amanda Ebbert

The transcriptional underpinnings of brain development remain poorly understood, particularly in humans and closely related non-human primates. We describe a high-resolution transcriptional atlas of rhesus monkey (Macaca mulatta) brain development that combines dense temporal sampling of prenatal and postnatal periods with fine anatomical division of cortical and subcortical regions associated with human neuropsychiatric disease. Gene expression changes more rapidly before birth, both in progenitor cells and maturing neurons. Cortical layers and areas acquire adult-like molecular profiles surprisingly late in postnatal development. Disparate cell populations exhibit distinct developmental timing of gene expression, but also unexpected synchrony of processes underlying neural circuit construction including cell projection and adhesion. Candidate risk genes for neurodevelopmental disorders including primary microcephaly, autism spectrum disorder, intellectual disability, and schizophrenia show disease-specific spatiotemporal enrichment within developing neocortex. Human developmental expression trajectories are more similar to monkey than rodent, although approximately 9% of genes show human-specific regulation with evidence for prolonged maturation or neoteny compared to monkey.


The Journal of Comparative Neurology | 2016

Comprehensive cellular-resolution atlas of the adult human brain

Song-Lin Ding; Joshua J. Royall; Susan M. Sunkin; Lydia Ng; Benjamin Facer; Phil Lesnar; Angie Guillozet-Bongaarts; Bergen McMurray; Aaron Szafer; Tim Dolbeare; Allison Stevens; Lee S. Tirrell; Thomas Benner; Shiella Caldejon; Rachel A. Dalley; Nick Dee; Christopher Lau; Julie Nyhus; Melissa Reding; Zackery L. Riley; David Sandman; Elaine Shen; Andre van der Kouwe; Ani Varjabedian; Michelle Write; Lilla Zöllei; Chinh Dang; James A. Knowles; Christof Koch; John Phillips

Detailed anatomical understanding of the human brain is essential for unraveling its functional architecture, yet current reference atlases have major limitations such as lack of whole‐brain coverage, relatively low image resolution, and sparse structural annotation. We present the first digital human brain atlas to incorporate neuroimaging, high‐resolution histology, and chemoarchitecture across a complete adult female brain, consisting of magnetic resonance imaging (MRI), diffusion‐weighted imaging (DWI), and 1,356 large‐format cellular resolution (1 µm/pixel) Nissl and immunohistochemistry anatomical plates. The atlas is comprehensively annotated for 862 structures, including 117 white matter tracts and several novel cyto‐ and chemoarchitecturally defined structures, and these annotations were transferred onto the matching MRI dataset. Neocortical delineations were done for sulci, gyri, and modified Brodmann areas to link macroscopic anatomical and microscopic cytoarchitectural parcellations. Correlated neuroimaging and histological structural delineation allowed fine feature identification in MRI data and subsequent structural identification in MRI data from other brains. This interactive online digital atlas is integrated with existing Allen Institute for Brain Science gene expression atlases and is publicly accessible as a resource for the neuroscience community. J. Comp. Neurol. 524:3127–3481, 2016.


The Journal of Comparative Neurology | 2014

Systematic comparison of adeno‐associated virus and biotinylated dextran amine reveals equivalent sensitivity between tracers and novel projection targets in the mouse brain

Quanxin Wang; Alex Henry; Julie A. Harris; Seung Wook Oh; Kevin M. Joines; Julie Nyhus; Karla E. Hirokawa; Nick Dee; Marty T. Mortrud; Sheana Parry; Benjamin Ouellette; Shiella Caldejon; Amy Bernard; Allan R. Jones; Hongkui Zeng; John G. Hohmann

As an anterograde neuronal tracer, recombinant adeno‐associated virus (AAV) has distinct advantages over the widely used biotinylated dextran amine (BDA). However, the sensitivity and selectivity of AAV remain uncharacterized for many brain regions and species. To validate this tracing method further, AAV (serotype 1) was systematically compared with BDA as an anterograde tracer by injecting both tracers into three cortical and 15 subcortical regions in C57BL/6J mice. Identical parameters were used for our sequential iontophoretic injections, producing injections of AAV that were more robust in size and in density of neurons infected compared with those of BDA. However, these differences did not preclude further comparison between the tracers, because the pairs of injections were suitably colocalized and contained some percentage of double‐labeled neurons. A qualitative analysis of projection patterns showed that the two tracers behave very similarly when injection sites are well matched. Additionally, a quantitative analysis of relative projection intensity for cases targeting primary motor cortex (MOp), primary somatosensory cortex (SSp), and caudoputamen (CP) showed strong agreement in the ranked order of projection intensities between the two tracers. A detailed analysis of the projections of two brain regions (SSp and MOp) revealed many targets that have not previously been described in the mouse or rat. Minor retrograde labeling of neurons was observed in all cases examined, for both AAV and BDA. Our results show that AAV has actions equivalent to those of BDA as an anterograde tracer and is suitable for analysis of neural circuitry throughout the mouse brain. J. Comp. Neurol. 522:1989–2012, 2014.


Nature | 2018

Shared and distinct transcriptomic cell types across neocortical areas

Bosiljka Tasic; Zizhen Yao; Lucas T. Graybuck; Kimberly A. Smith; Thuc Nghi Nguyen; Darren Bertagnolli; Jeff Goldy; Emma Garren; Michael N. Economo; Sarada Viswanathan; Osnat Penn; Trygve E. Bakken; Vilas Menon; Jeremy A. Miller; Olivia Fong; Karla E. Hirokawa; Kanan Lathia; Christine Rimorin; Michael Tieu; Rachael Larsen; Tamara Casper; Eliza Barkan; Matthew Kroll; Sheana Parry; Nadiya V. Shapovalova; Daniel Hirschstein; Julie Pendergraft; Heather A. Sullivan; Tae Kyung Kim; Aaron Szafer

The neocortex contains a multitude of cell types that are segregated into layers and functionally distinct areas. To investigate the diversity of cell types across the mouse neocortex, here we analysed 23,822 cells from two areas at distant poles of the mouse neocortex: the primary visual cortex and the anterior lateral motor cortex. We define 133 transcriptomic cell types by deep, single-cell RNA sequencing. Nearly all types of GABA (γ-aminobutyric acid)-containing neurons are shared across both areas, whereas most types of glutamatergic neurons were found in one of the two areas. By combining single-cell RNA sequencing and retrograde labelling, we match transcriptomic types of glutamatergic neurons to their long-range projection specificity. Our study establishes a combined transcriptomic and projectional taxonomy of cortical cell types from functionally distinct areas of the adult mouse cortex.Single-cell transcriptomics of more than 20,000 cells from two functionally distinct areas of the mouse neocortex identifies 133 transcriptomic types, and provides a foundation for understanding the diversity of cortical cell types.


eLife | 2017

Neuropathological and transcriptomic characteristics of the aged brain

Jeremy A. Miller; Angela L. Guillozet-Bongaarts; Laura E. Gibbons; Nadia Postupna; Anne Renz; Allison Beller; Susan M. Sunkin; Lydia Ng; Shannon E. Rose; Kimberly A. Smith; Aaron Szafer; Chris Barber; Darren Bertagnolli; Kristopher Bickley; Krissy Brouner; Shiella Caldejon; Mike Chapin; Mindy L Chua; Natalie M Coleman; Eiron Cudaback; Christine Cuhaciyan; Rachel A. Dalley; Nick Dee; Tsega Desta; Tim Dolbeare; Nadezhda Dotson; Michael Fisher; Nathalie Gaudreault; Garrett Gee; Terri L. Gilbert

As more people live longer, age-related neurodegenerative diseases are an increasingly important societal health issue. Treatments targeting specific pathologies such as amyloid beta in Alzheimer’s disease (AD) have not led to effective treatments, and there is increasing evidence of a disconnect between traditional pathology and cognitive abilities with advancing age, indicative of individual variation in resilience to pathology. Here, we generated a comprehensive neuropathological, molecular, and transcriptomic characterization of hippocampus and two regions cortex in 107 aged donors (median = 90) from the Adult Changes in Thought (ACT) study as a freely-available resource (http://aging.brain-map.org/). We confirm established associations between AD pathology and dementia, albeit with increased, presumably aging-related variability, and identify sets of co-expressed genes correlated with pathological tau and inflammation markers. Finally, we demonstrate a relationship between dementia and RNA quality, and find common gene signatures, highlighting the importance of properly controlling for RNA quality when studying dementia.


bioRxiv | 2018

Classification of electrophysiological and morphological types in mouse visual cortex

Nathan W. Gouwens; Staci A. Sorensen; Jim Berg; Chang-Kyu Lee; Tim Jarsky; Jonathan T. Ting; Susan M. Sunkin; David Feng; Costas A. Anastassiou; Eliza Barkan; Kris Bickley; Nicole Blesie; Thomas Braun; Krissy Brouner; Agata Budzillo; Shiella Caldejon; Tamara Casper; Dan Casteli; Peter Chong; Kirsten Crichton; Christine Cuhaciyan; Tanya L. Daigle; Rachel A. Dalley; Nick Dee; Tsega Desta; Samuel Dingman; Alyse Doperalski; Nadezhda Dotson; Tom Egdorf; Michael Fisher

Understanding the diversity of cell types in the brain has been an enduring challenge and requires detailed characterization of individual neurons in multiple dimensions. To profile morpho-electric properties of mammalian neurons systematically, we established a single cell characterization pipeline using standardized patch clamp recordings in brain slices and biocytin-based neuronal reconstructions. We built a publicly-accessible online database, the Allen Cell Types Database, to display these data sets. Intrinsic physiological and morphological properties were measured from over 1,800 neurons from the adult laboratory mouse visual cortex. Quantitative features were used to classify neurons into distinct types using unsupervised methods. We establish a taxonomy of morphologically- and electrophysiologically-defined cell types for this region of cortex with 17 e-types and 35 m-types, as well as an initial correspondence with previously-defined transcriptomic cell types using the same transgenic mouse lines.

Collaboration


Dive into the Nick Dee's collaboration.

Top Co-Authors

Avatar

Kimberly A. Smith

Allen Institute for Brain Science

View shared research outputs
Top Co-Authors

Avatar

Darren Bertagnolli

Allen Institute for Brain Science

View shared research outputs
Top Co-Authors

Avatar

Jeremy A. Miller

Allen Institute for Brain Science

View shared research outputs
Top Co-Authors

Avatar

Rachel A. Dalley

Allen Institute for Brain Science

View shared research outputs
Top Co-Authors

Avatar

Shiella Caldejon

Allen Institute for Brain Science

View shared research outputs
Top Co-Authors

Avatar

Jeff Goldy

Allen Institute for Brain Science

View shared research outputs
Top Co-Authors

Avatar

Krissy Brouner

Allen Institute for Brain Science

View shared research outputs
Top Co-Authors

Avatar

Lydia Ng

Allen Institute for Brain Science

View shared research outputs
Top Co-Authors

Avatar

Susan M. Sunkin

Allen Institute for Brain Science

View shared research outputs
Top Co-Authors

Avatar

Tim Dolbeare

Allen Institute for Brain Science

View shared research outputs
Researchain Logo
Decentralizing Knowledge