Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nick Kornweibel is active.

Publication


Featured researches published by Nick Kornweibel.


Proceedings of SPIE | 2010

Status and new operation modes of the versatile VLT/NaCo

J. H. Girard; Markus Kasper; Sascha P. Quanz; Matthew A. Kenworthy; Sridharan Rengaswamy; R. Schödel; A. Gallenne; S. Gillessen; Nicolas Huerta; Pierre Kervella; Nick Kornweibel; Rainer Lenzen; A. Mérand; G. Montagnier; Jared O'Neal; G. Zins

This paper aims at giving an update on the most versatile Adaptive Optics fed instrument to date, the well known and successful NACO*. Although NACO is only scheduled for about two more years† at the Very Large Telescope (VLT), it keeps on evolving with additional operation modes bringing original astronomical results. The high contrast imaging community uses it creatively as a test-bench for SPHERE‡ and other second generation planet imagers. A new visible wavefront sensor (WFS) optimized for Laser Guide Star (LGS) operations has been installed and tested, the cube mode is more and more required for frame selection on bright sources, a seeing enhancer mode (no tip/tilt correction) is now offered to provide full sky coverage and welcome all kind of extragalactic applications, etc. The Instrument Operations Team (IOT) and Paranal engineers are currently working hard at maintaining the instrument overall performances but also at improving them and offering new capabilities, providing the community with a well tuned and original instrument for the remaining time it is being used. The present contribution delivers a non-exhaustive overview of the new modes and experiments that have been carried out in the past months.


Proceedings of SPIE | 2004

The common pipeline library: standardizing pipeline processing

Derek J. McKay; Pascal Ballester; Klaus Banse; Carlo Izzo; Yves Jung; Michael Kiesgen; Nick Kornweibel; Lars Lundin; Andrea Modigliani; Ralf Palsa; Cyrus Sabet

The European Southern Observatory (ESO) develops and maintains a large number of instrument-specific data processing pipelines. These pipelines must produce standard-format output and meet the need for data archiving and the computation and logging of quality assurance parameters. As the number, complexity and data-output-rate of instrument increases, so does the challenge to develop and maintain the associated processing software. ESO has developed the Common Pipeline Library (CPL) in order to unify the pipeline production effort and to minimise code duplication. The CPL is a self-contained ISO-C library, designed for use in a C/C++ environment. It is designed to work with FITS data, extensions and meta-data, and provides a template for standard algorithms, thus unifying the look-and-feel of pipelines. It has been written in such a way to make it extremely robust, fast and generic, in order to cope with the operation-critical online data reduction requirements of modern observatories. The CPL has now been successfully incorporated into several new and existing instrument systems. In order to achieve such success, it is essential to go beyond simply making the code publicly available, but also engage in training, support and promotion. There must be a commitment to maintenance, development, standards-compliance, optimisation, consistency and testing. This paper describes in detail the experiences of the CPL in all these areas. It covers the general principles applicable to any such software project and the specific challenges and solutions, that make the CPL unique.


Proceedings of SPIE | 2016

Improving E-ELT M1 prototype hard position actuators with active damping

B. Sedghi; Martin Dimmler; M. Müller; Nick Kornweibel

In this paper we will briefly revisit the optical vibration measurement system (OVMS) at the Large Binocular Telescope (LBT) and how these values are used for disturbance compensation and particularly for the LBT Interferometer (LBTI) and the LBT Interferometric Camera for Near-Infrared and Visible Adaptive Interferometry for Astronomy (LINC-NIRVANA). We present the now centralized software architecture, called OVMS+, on which our approach is based and illustrate several challenges faced during the implementation phase. Finally, we will present measurement results from LBTI proving the effectiveness of the approach and the ability to compensate for a large fraction of the telescope induced vibrations.


Ground-based and Airborne Telescopes VII | 2018

MELT: an optomechanical emulation testbench for ELT wavefront control and phasing strategy

Thomas Pfrommer; Steffan Lewis; Samuel A. Leveque; Christoph Frank; Paolo La Penna; Johan Kosmalski; Jason Spyromilio; Henri Bonnet; Nick Kornweibel; Anne-Laure Cheffot; I. Guidolin

We present an optomechanical test bench setup (MELT) for testing and validating key functionalities to be used on the Extremely Large Telescope (ELT) during the periods of system verification, wavefront control commissioning, through the handover to science, up to regular diagnostic, monitoring, and validation tasks during operations. The main objectives of MELT are to deploy and validate the telescope control system, to deploy and validate wavefront control algorithms for commissioning and operations, as well as to produce and validate key requirements for the phasing and diagnostic station (PDS) of the ELT. The purpose of MELT is to deploy optomechanical key components such as a segmented primary mirror, a secondary mirror on a hexapod, an adaptive fourth mirror, and a fast tip/tilt mirror together with their control interfaces that emulate the real telescope optomechanical conditions. The telescope control system, deployed on MELT can test control schemes with the active mounts emulating the real ELT optomechanical control interfaces. The presented optomechanical setup uses the Active Segmented Mirror (ASM) with its piezo-driven 61 segments and a diameter of 15 cm. It was designed, built, and used on sky during the Active Phasing Experiment (APE). Several beam paths after the telescope optical train on MELT are conditioned and guided to wavefront sensors and cameras, sensitive to wavelength bands in the visible and infrared to emulate wavefront commissioning and phasing tasks. This optical path resembles part of the phasing and diagnostics station (PDS) of the ELT, which is used to acquire the first star photons through the ELT and to learn the usage and control of all the ELT optomechanics. The PDS will be developed, designed, and built in-house at ESO. MELT helps its design by providing a detailed test setup for defining and deploying system engineering tasks, such as detailed functional analysis, definition of tasks to be carried out, and technical requirements, as well as operational commissioning aspects. The bench test facility MELT will in the end help us to be as much as possible prepared when the telescope sends the first star light through the optical train to be able to tackle the unforeseeable problems and not be caught up with the foreseeable ones.


Proceedings of SPIE | 2008

Tests of the PSF reconstruction algorithm for NACO/VLT

Yann Clenet; C. Lidman; Eric Gendron; Gerard Rousset; Thierry Fusco; Nick Kornweibel; Markus Kasper; Nancy Ageorges

We have developed an PSF reconstruction algorithm for the NAOS adaptive optics system that is coupled with CONICA at ESO/VLT. We have modified the algorithm of Véran et al. (1997), originally written for PUEO at CFHT, to make use of the specific real-time wavefront-related data that observers with NACO receive together with their scientific images. In addition, we use the Vii algorithm introduced by Clénet et al. (2006) and Gendron et al. (2006) instead of the Uij algorithm originally used by Véran et al. (1997). Until now, tests on NAOS has been undertaken during technical time thanks to the NACO team at Paranal. A first test has been successfully performed to calibrate the orientation of reconstructed PSFs with respect to NACO images. We have also obtained two sets of PSF reconstruction test data with NACO in November 2006 and September 2007 to reconstruct PSFs. Discrepancies exist between the observed and reconstructed PSFs: their Strehl ratios are ~31% and ~39% respectively in Nov. 2006, ~31% and ~19% respectively in Sept. 2007. These differences may be at least partly explained by reconstructions that either did not account for the aliasing contribution or poorly estimated the noise contribution with the available noise information at that time. We have additionally just started to test our algorithm using the AO bench Sésame, at LESIA. Results are promising but need to be extended to a larger set of atmospheric conditions or AO correction qualities.


Proceedings of SPIE | 2004

Moor: web access to end-to-end data flow information at ESO

Alberto Maurizio Chavan; Michele Peron; Judith Anwunah; Tim Canavan; Dario Dorigo; Nick Kornweibel; Fabio Sogni

All ESO Science Operations teams operate on Observing Runs, loosely defined as blocks of observing time on a specific instrument. Observing Runs are submitted as part of an Observing Proposal and executed in Service or Visitor Mode. As an Observing Run progresses through its life-cycle, more and more information gets associated to it: Referee reports, feasibility and technical evaluations, constraints, pre-observation data, science and calibration frames, etc. The Manager of Observing Runs project (Moor) will develop a system to collect operational information in a database, offer integrated access to information stored in several independent databases, and allow HTML-based navigation over the whole information set. Some Moor services are also offered as extensions to, or complemented by, existing desktop applications.


Proceedings of SPIE | 2014

Status of E-ELT M5 scale-one demonstrator

Pablo Barriga; B. Sedghi; Martin Dimmler; Nick Kornweibel

The fifth mirror of the European Extremely Large Telescope optical train is a field stabilization tip/tilt unit responsible for correcting the dynamical tip and tilt caused mainly by wind load on the telescope. A scale-one prototype including the inclined support, the fixed frame and a basic control system was designed and manufactured by NTE-SENER (Spain) and CSEM (Switzerland) as part of the prototyping and design activities. All interfaces to the mirror have been reproduced on a dummy structure reproducing the inertial characteristics of the optical element. The M5 unit is required to have sufficient bandwidth for tip/tilt reference commands coming from the wavefront control system. Such a bandwidth can be achieved using local active damping loop to damp the low frequency mechanical modes before closing a position loop. Prototyping on the M5 unit has been undertaken in order to demonstrate the E-ELT control system architecture, concepts and development standards and to further study active damping strategies. The control system consists of two nested loops: a local damping loop and a position loop. The development of this control system was undertaken following the E-ELT control system development standards in order to determine their applicability and performance and includes hardware selection, communication, synchronization, configuration, and data logging. In this paper we present the current status of the prototype M5 control system and the latest results on the active damping control strategy, in particular the promising results obtained with the method of positive position feedback.


Software and Cyberinfrastructure for Astronomy V | 2018

Designing and managing software interfaces for the ELT

Gianluca Chiozzi; Luigi Andolfato; M. Kiekebusch; Nick Kornweibel; Marcus Schilling; Michele Zamparelli

The Extremely Large Telescope[1] (ELT) is a 39 meters optical telescope under construction at an altitude of about 3000m in the Chilean Atacama desert. The optical design is based on a novel five-mirror scheme and incorporates adaptive optics mirrors. The primary mirror consists of 798 segments, each 1.4 meters wide. The architecture of the control system[2] is split in layers and in a high number of subsystems/components developed by different parties. This implies a high number of interfaces that must be designed and maintained under configuration control, to ensure a flawless integration of the different parts. Having interfaces (and data) definitions in a flexible central place allows us to extract several different artifacts (for example Interface Control Documents (ICDs), Interface Definition Language (IDL) files, tabular spreadsheets, help files, other generated code formats like code stubs or state machine implementations). In this paper, we explain how selecting a graphical modeling language like SysML and using graphical and tabular editing features made available by state of the art modeling tools presents a number of advantages with respect to other solutions like spreadsheets, a relational database, or a custom textual DSL. Still, using standard export/import formats (EMF XMI), we do not bind ourselves to a specific vendor. We describe the workflow that we have identified for the definition of interfaces, what artifacts we want to automatically produce and why. We also describe what technologies we are using to reach these objectives. A key aspect of this work is the selection of interface design patterns that are formal enough to allow automatic generation of the artifacts and, at the same time, pragmatic and simple to gain acceptance from all users and not incur in overhead.


Software and Cyberinfrastructure for Astronomy V | 2018

The ELT control system

Gianluca Chiozzi; M. Kiekebusch; Nick Kornweibel; Ulrich Lampater; Marcus Schilling; B. Sedghi; Heiko Sommer

The Extremely Large Telescope (ELT) is a 39 meters optical telescope under construction at an altitude of about 3000m in the Chilean Atacama desert. The optical design is based on a novel five-mirror scheme and incorporates adaptive optics mirrors. The primary mirror consists of 798 segments, each 1.4 meters wide[1]. The control of this telescope and of the instruments that will be mounted on it is very challenging, because of its size, the number of sensors and actuators, the computing performance required for the phasing of the primary mirror, the adaptive optics and the correlation between all the elements in the optical path. In this paper we describe the control system architecture, emerging from scientific and technical requirements. We also describe how the procurement strategy (centered on industrial contracts at subsystem level) affects the definition of the architecture and the technological choices. We first introduce the global architecture of the system, with Local Control Systems and a Supervisory Control layer. The Local Control Systems is astronomy-agnostic and isolate the control of the subsystems procured through industrial contracts. The Supervisory Control layer is instead responsible for coordinating the operation of the different subsystems to realize the observation cases identified for the operation of the telescope. The control systems of the instruments interface with the telescope using a well-defined and standardized interface. To facilitate the work of the Consortia responsible for the construction of the instruments, we provide an Instrumentation Control Software Framework. This will ensure uniformity in the design of the control systems across instruments, making maintenance easier. This approach was successfully adopted for the instrumentation of the Very Large Telescope facility. We will analyze the process that was followed for defining the architecture from the requirements and use cases and to produce a design that addresses the technical challenges.


Ground-based and Airborne Telescopes VII | 2018

Getting ready for serial production of the segmented 39-meter ELT primary: status, challenges and strategies

Martin Dimmler; Pablo Barriga; Marc Cayrel; Frederic Derie; Andreas Foerster; F. Gonte; Juan-Carlos Gonzalez; L. Jochum; Nick Kornweibel; Samuel A. Leveque; Christian Lucuix; Lorenzo Pettazzi

In the last years the ELT Program has entered construction phase. For the large 39 meter segmented primary mirror unit with thousands of components this means that the start of the series production is getting closer, where the final hardware will be built. The M1 Unit has been broken down in products and a procurement strategy has been developed. Most of the major design decisions have been frozen and component specifications have been settled. Most of the suppliers have already been selected and contracts have been kicked off. This paper describes the ELT M1 Unit product breakdown and the procurement baseline for each product and its status. The production contracts would not have been possible without intense prototyping and verification strategies independent of the component contracts. Therefore, the paper also takes a look back at the prototypes and de-risking strategies, which had been put in place to prepare for construction phase. Ramping up the construction contracts involves finishing design details for some products while setting up production lines for others. This requires controlling interfaces and cross-contract dependencies, a challenge described in this paper. For continuous de-risking similar verification strategies than during the design phase are planned in parallel with the production until telescope assembly, integration and verification. These measures will increase confidence in the design choices, allow early discovery of remaining design flaws and provide training means for assembly and integration long time before all components of the ELT M1 are complete and being installed on Cerro Armazones in Chile. The paper will also give an outlook on these running and planned activities.

Collaboration


Dive into the Nick Kornweibel's collaboration.

Top Co-Authors

Avatar

B. Sedghi

European Southern Observatory

View shared research outputs
Top Co-Authors

Avatar

Martin Dimmler

European Southern Observatory

View shared research outputs
Top Co-Authors

Avatar

Andrea Modigliani

European Southern Observatory

View shared research outputs
Top Co-Authors

Avatar

Carlo Izzo

European Southern Observatory

View shared research outputs
Top Co-Authors

Avatar

Cyrus Sabet

European Southern Observatory

View shared research outputs
Top Co-Authors

Avatar

Klaus Banse

European Southern Observatory

View shared research outputs
Top Co-Authors

Avatar

Michele Peron

European Southern Observatory

View shared research outputs
Top Co-Authors

Avatar

Pablo Barriga

European Southern Observatory

View shared research outputs
Top Co-Authors

Avatar

Pascal Ballester

European Southern Observatory

View shared research outputs
Top Co-Authors

Avatar

Ralf Palsa

European Southern Observatory

View shared research outputs
Researchain Logo
Decentralizing Knowledge