Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nickolay A. Krotkov is active.

Publication


Featured researches published by Nickolay A. Krotkov.


Journal of Geophysical Research | 1995

Volcanic sulfur dioxide measurements from the total ozone mapping spectrometer instruments

Arlin J. Krueger; Louis S. Walter; P. K. Bhartia; Charles C. Schnetzler; Nickolay A. Krotkov; I. Sprod; Gregg J. S. Bluth

The total ozone mapping spectrometer (TOMS), first flown on the Nimbus 7 satellite, has delivered an unanticipated set of unique information about volcanic plumes because of its contiguous spatial mapping and use of UV wavelengths. The accuracies of TOMS sulfur dioxide retrievals, volcanic plume masses, and eruption totals under low-latitude conditions are evaluated using radiative transfer simulations and error analysis. The retrieval algorithm is a simultaneous solution of the absorption optical depth equations including ozone and sulfur dioxide at the four shortest TOMS wavelengths and an empirical correction based on background condition residuals. The retrieval algorithm reproduces model stratospheric sulfur dioxide plume amounts within ±10% over most central scan angles and moderate solar zenith angles if no aerosols or ash are present. The errors grow to 30% under large solar zenith angle conditions. Volcanic ash and sulfate aerosols in the plume in moderate optical depths (0.3) produce an overestimation of the sulfur dioxide by 15–25% depending on particle size and composition. Retrievals of tropospheric volcanic plumes are affected by the reflectivity of the underlying surface or clouds. The precision of individual TOMS SO2 soundings is limited by data quantization to ±6 Dobson units. The accuracy is independent of most instrument calibration errors but depends linearly on relative SO2 absorption cross-section errors at the TOMS wavelengths. Volcanic plume mass estimates are dependent on correction of background offsets integrated over the plume area. The errors vary with plume mass and area, thus are highly individual. In general, they are least for moderate size, compact plumes. Estimates of the total mass of explosively erupted sulfur dioxide depend on extrapolation of a series of daily plume masses backward to the time of the eruption. Errors of 15–30% are not unusual. Effusive eruption total mass estimates are more uncertain due to difficulties in separating new from old sulfur dioxide in daily observations.


Journal of Geophysical Research | 2007

Validation of daily erythemal doses from Ozone Monitoring Instrument with ground‐based UV measurement data

Aapo Tanskanen; Anders Lindfors; Anu Määttä; Nickolay A. Krotkov; Jay R. Herman; Jussi Kaurola; Tapani Koskela; Kaisa Lakkala; Vitali E. Fioletov; Germar Bernhard; Richard McKenzie; Yutaka Kondo; Michael O'Neill; Harry Slaper; Peter den Outer; A. F. Bais; J. Tamminen

[1] The Dutch-Finnish Ozone Monitoring Instrument (OMI) on board the NASA EOS Aura spacecraft is a nadir viewing spectrometer that measures solar reflected and backscattered light in a selected range of the ultraviolet and visible spectrum. The instrument has a 2600 km wide viewing swath and it is capable of daily, global contiguous mapping. The Finnish Meteorological Institute and NASA Goddard Space Flight Center have developed a surface ultraviolet irradiance algorithm for OMI that produces noontime surface spectral UV irradiance estimates at four wavelengths, noontime erythemal dose rate (UV index), and the erythemal daily dose. The overpass erythemal daily doses derived from OMI data were compared with the daily doses calculated from the ground-based spectral UV measurements from 18 reference instruments. Two alternative methods for the OMI UV algorithm cloud correction were compared: the plane-parallel cloud model method and the method based on Lambertian equivalent reflectivity. The validation results for the two methods showed some differences, but the results do not imply that one method is categorically superior to the other. For flat, snow-free regions with modest loadings of absorbing aerosols or trace gases, the OMI-derived daily erythemal doses have a median overestimation of 0–10%, and some 60 to 80% of the doses are within ±20% from the ground reference. For sites significantly affected by absorbing aerosols or trace gases one expects, and observes, bigger positive bias up to 50%. For high-latitude sites the satellite-derived doses are occasionally up to 50% too small because of unrealistically small climatological surface albedo.


Geological Society, London, Special Publications | 2003

Volcanic eruption detection by the Total Ozone Mapping Spectrometer (TOMS) instruments: a 22-year record of sulphur dioxide and ash emissions

Simon A. Carn; Arlin J. Krueger; Gregg J. S. Bluth; Stephen J. Schaefer; Nickolay A. Krotkov; I. M. Watson; S. Datta

Abstract Since their first depolyment in November 1978, the Total Ozone Mapping Spectrometer (TOMS) instruments have provided a robust and near-continuous record of sulphur dioxide (SO2) and ash emissions from active volcanoes worldwide. Data from the four TOMS satellites that have flown to date have been analysed with the latest SO2/ash algorithms and incorporated into a TOMS volcanic emissions database that presently covers 22 years of SO2 and ash emissions. The 1978–2001 record comprises 102 eruptions from 61 volcanoes, resulting in 784 days of volcanic cloud observations. Regular eruptions of Nyamuragira (DR Congo) since 1978, accompanied by copious SO2 production, have contributed material on approximately 30% of the days on which clouds were observed. The latest SO2 retrieval results from Earth Probe (EP) TOMS document a period (1996–2001) lacking large explosive eruptions, and also dominated by SO2 emission from four eruptions of Nyamuragira. EP TOMS has detected the SO2 and ash produced during 23 eruptions from 15 volcanoes to date, with volcanic clouds observed on 158 days. The EP TOMS instrument began to degrade in 2001, but has now stabilized, although its planned successor (QuikTOMS) recently failed to achieve orbit. New SO2 algorithms are currently being developed for the Ozone Monitoring Instrument, which will continue the TOMS record of UV remote sensing of volcanic emissions from 2004 onwards.


Optical Engineering | 2002

Comparison of Brewer ultraviolet irradiance measurements with total ozone mapping spectrometer satellite retrievals

Vitali E. Fioletov; James B. Kerr; David I. Wardle; Nickolay A. Krotkov; Jay R. Herman

Comparison of measured UV irradiance with estimates from satellite observation is potentially effective for the validation of data from the two sources. Summer data from ten Canadian Brewer sites were compared in this study with noon UV irradiance estimated from total ozone mapping spectrometer (TOMS) measurements. In general, TOMS estimates can successfully reproduce long-term and major short-term UV variations. However, there are some systematic differences between the measurements at the ground and satellite-retrieved UV irradiance. From 3 to 11% of the Brewer-TOMS difference can be attributed to the Brewer angular response error. This error depends on the solar zenith angle and cloud conditions, and is different from instrument to instru- ment. When the angular response of the Brewer instrument is consid- ered and applied, the Brewer data are still lower than TOMS-estimated UV irradiance by 9 to 10% on average at all sites except one. The dif- ference is close to zero at one station (Saturna Island), possibly due to its much cleaner air. The bias can be seen in clear sky conditions and at the 324-nm wavelength, i.e., it is not related to local cloud conditions or absorption by ozone or SO2 .


Geophysical Monograph 139: Volcanism and the Earths Atmosphere | 2013

The February–March 2000 Eruption of Hekla, Iceland from a Satellite Perspective

William I. Rose; Yiying Gu; M. I. Watson; Tianxu Yu; Gregg J. S. Bluth; A. J. Prata; Arlin J. Krueger; Nickolay A. Krotkov; Simon A. Carn; M. D. Fromm; D. E. Hunton; Gerald Ernst; Albert A. Viggiano; Thomas M. Miller; J. O. Ballenthin; J. M. Reeves; J. C. Wilson; Bruce E. Anderson; D. E. Flittner

An 80,000 km 2 stratospheric volcanic cloud formed from the 26 February 2000 eruption of Hekla (63.98° N, 19.70° W). POAM-III profiles showed the cloud was 9-12 km asl. During 3 days this cloud drifted north. Three remote sensing algorithms (TOMS SO 2 , MODIS & TOVS 7.3 μm IR and MODIS 8.6 μm IR) estimated ∼0.2 Tg SO 2 . Sulfate aerosol in the cloud was 0.003-0.008 Tg, from MODIS IR data. MODIS and AVHRR show that cloud particles were ice. The ice mass peaked at ∼1 Tg ∼10 hours after eruption onset. A ∼0.1 Tg mass of ash was detected in the early plume. Repetitive TOVS data showed a decrease of SO 2 in the cloud from 0.2 Tg to below TOVS detection (i.e.<0.01 Tg) in ∼3.5 days. The stratospheric height of the cloud may result from a large release of magmatic water vapor early (1819 UT on 26 February) leading to the ice-rich volcanic cloud. The optical depth of the cloud peaked early on 27 February and faded with time, apparently as ice fell out. A research aircraft encounter with the top of the cloud at 0514 UT on 28 February, 35 hours after eruption onset, provided validation of algorithms. The aircrafts instruments measured ∼0.5-1 ppmv SO 2 and ∼35-70 ppb sulfate aerosol in the cloud, 10-30% lower than concentrations from retrievals a few hours later. Different SO 2 algorithms illuminate environmental variables which affect the quality of results. Overall this is the most robust data set ever analyzed from the first few days of stratospheric residence of a volcanic cloud.


IEEE Transactions on Geoscience and Remote Sensing | 2006

Surface ultraviolet irradiance from OMI

Aapo Tanskanen; Nickolay A. Krotkov; Jay R. Herman; Antti Arola

The Ozone Monitoring Instrument (OMI) onboard the NASA Earth Observing System (EOS) Aura spacecraft is a nadir-viewing spectrometer that measures solar reflected and backscattered light in a selected range of the ultraviolet and visible spectrum. The instrument has a 2600-km-wide viewing swath, and it is capable of daily, global contiguous mapping. We developed and implemented a surface ultraviolet (UV) irradiance algorithm for OMI that produces noontime surface spectral UV irradiance estimates at four wavelengths (305, 310, 324, and 380 nm). Additionally, noontime erythemal dose rate and the erythemal daily dose are estimated. The OMI surface UV algorithm inherits from the surface UV algorithm developed by NASA Goddard Space Flight Center for the Total Ozone Mapping Spectrometer (TOMS). The OMI surface UV irradiance products are produced and archived in HDF5-EOS format by Finnish Meteorological Institute. The accuracy of the surface UV estimates depend on UV wavelength and atmospheric and other geolocation specific conditions ranging from 7% to 30%. A postprocessing aerosol correction can be applied at sites with additional ground-based measurements of the aerosol absorption optical thickness. The current OMI surface UV product validation plan is presented.


Geophysical Research Letters | 1999

Comparison of TOMS and AVHRR volcanic ash retrievals from the August 1992 eruption of Mt. Spurr

Nickolay A. Krotkov; O. Torres; C. Seftor; Arlin J. Krueger; Alexander B. Kostinski; William I. Rose; Gregg J. S. Bluth; Dieter J. G. Schneider; S. J. Schaefer

On August 19, 1992, the Advanced Very High Resolution Radiometer (AVHRR) onboard NOAA-12 and NASAs Total Ozone Mapping Spectrometer (TOMS) onboard the Nimbus-7 satellite simultaneously detected and mapped the ash cloud from the eruption of Mt. Spurr, Alaska. The spatial extent and geometry of the cloud derived from the two datasets are in good agreement and both AVHRR split window IR (11–12µm brightness temperature difference) and the TOMS UV Aerosol Index (0.34–0.38µm ultraviolet backscattering and absorption) methods give the same range of total cloud ash mass. Redundant methods for determination of ash masses in drifting volcanic clouds offer many advantages for potential application to the mitigation of aircraft hazards.


Journal of Geophysical Research | 2006

Measurements of nitrogen dioxide total column amounts using a Brewer double spectrophotometer in direct Sun mode

Alexander Cede; Jay R. Herman; Andreas Richter; Nickolay A. Krotkov; J. P. Burrows

10 16 molecules cm � 2 ), which is more accurate than scattered light measurements for high NO2 amounts. Measured NO2 column amounts, ranging from 0 to 3 DU with a mean of 0.7 DU, show a pronounced daily course and a strong variability from day to day. The NO2 concentration typically increases from sunrise to noon. In the afternoon it decreases in summer and stays constant in winter. As expected from the anthropogenic nature of its source, NO2 amounts on weekends are significantly reduced. The measurements were compared to satellite retrievals from Scanning Image Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY). Satellite data give the same average NO2 column and show a seasonal cycle that is similar to the ground data in the afternoon. We show that NO2 must be considered when retrieving aerosol absorption properties, especially for situations with low aerosol optical depth.


Environmental Science & Technology | 2013

Ozone monitoring instrument observations of interannual increases in SO2 emissions from Indian coal-fired power plants during 2005-2012.

Zifeng Lu; David G. Streets; Benjamin de Foy; Nickolay A. Krotkov

Due to the rapid growth of electricity demand and the absence of regulations, sulfur dioxide (SO2) emissions from coal-fired power plants in India have increased notably in the past decade. In this study, we present the first interannual comparison of SO2 emissions and the satellite SO2 observations from the Ozone Monitoring Instrument (OMI) for Indian coal-fired power plants during the OMI era of 2005-2012. A detailed unit-based inventory is developed for the Indian coal-fired power sector, and results show that its SO2 emissions increased dramatically by 71% during 2005-2012. Using the oversampling technique, yearly high-resolution OMI maps for the whole domain of India are created, and they reveal a continuous increase in SO2 columns over India. Power plant regions with annual SO2 emissions greater than 50 Gg year(-1) produce statistically significant OMI signals, and a high correlation (R = 0.93) is found between SO2 emissions and OMI-observed SO2 burdens. Contrary to the decreasing trend of national mean SO2 concentrations reported by the Indian Government, both the total OMI-observed SO2 and annual average SO2 concentrations in coal-fired power plant regions increased by >60% during 2005-2012, implying the air quality monitoring network needs to be optimized to reflect the true SO2 situation in India.


Journal of Geophysical Research | 2001

Global mapping of underwater UV irradiances and DNA‐weighted exposures using Total Ozone Mapping Spectrometer and Sea‐viewing Wide Field‐of‐view Sensor data products

Alexander P. Vasilkov; Nickolay A. Krotkov; Jay R. Herman; Charles R. McClain; Kevin R. Arrigo; Wayne D. Robinson

The global stratospheric ozone layer depletion results in an increase in biologically harmful ultraviolet (UV) radiation reaching the surface and penetrating to ecologically significant depths in natural waters. Such an increase can be estimated on a global scale by combining satellite estimates of UV irradiance at the ocean surface from the Total Ozone Mapping Spectrometer (TOMS) satellite instrument with the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) satellite ocean color measurements in the visible spectral region. In this paper we propose a model of seawater optical properties in the UV spectral region based on the case 1 water model in the visible range. The inputs to the model are standard monthly SeaWiFS products: chlorophyll concentration and the diffuse attenuation coefficient at 490 nm. Penetration of solar UV radiation to different depths in open ocean waters is calculated using the radiative transfer quasi-single scattering approximation (QSSA). The accuracy of the QSSA approximation in the water is tested using more accurate codes. Sensitivity studies of underwater UV irradiance to atmospheric and oceanic optical properties have shown that the main environmental parameters controlling absolute levels of UVB (280–320 nm) and DNA-weighted irradiance underwater are solar zenith angle, cloud transmittance, water optical properties, and total ozone. Monthly maps of underwater UV irradiance and DNA-weighted exposure are calculated using monthly mean SeaWiFS chlorophyll and diffuse attenuation coefficient, daily SeaWiFS cloud fraction data, and the TOMS-derived surface UV irradiance daily maps. The results include global maps of monthly average UVB irradiance and DNA-weighted daily exposures at 3 and 10 m and depths where the UVB irradiance and DNA-weighted dose rate at local noon are equal to 10% of their surface values.

Collaboration


Dive into the Nickolay A. Krotkov's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Simon A. Carn

Michigan Technological University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pawan K. Bhartia

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

Pieternel F. Levelt

Royal Netherlands Meteorological Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gregg J. S. Bluth

Michigan Technological University

View shared research outputs
Top Co-Authors

Avatar

Antti Arola

Finnish Meteorological Institute

View shared research outputs
Top Co-Authors

Avatar

Jussi Kaurola

Finnish Meteorological Institute

View shared research outputs
Top Co-Authors

Avatar

David G. Streets

Argonne National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge