Nicola Kielland
University of Barcelona
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nicola Kielland.
Journal of the American Chemical Society | 2013
Christopher J. Whiteoak; Nicola Kielland; Victor Laserna; Eduardo C. Escudero-Adán; Eddy Martin; Arjan W. Kleij
An aluminum complex based on an amino triphenolate ligand scaffold shows unprecedented high activity (initial TOFs up to 36,000 h(-1)), broad substrate scope, and functional group tolerance in the formation of highly functional organic carbonates prepared from epoxides and CO(2). The developed catalytic protocol is further characterized by low catalyst loadings and relative mild reaction conditions using a cheap, abundant, and nontoxic metal.
Chemistry: A European Journal | 2014
Christopher J. Whiteoak; Nicola Kielland; Victor Laserna; Fernando Castro‐Gómez; Eddy Martin; Eduardo C. Escudero-Adán; Carles Bo; Arjan W. Kleij
Al(III) complexes of amino-tris(phenolate) ligand scaffolds have been prepared to attain highly Lewis acidic catalysts. Combination of the aforementioned systems with ammonium halides provides highly active catalysts for the synthesis of organic carbonates through addition of carbon dioxide to oxiranes with initial turnover frequencies among the highest reported to date within the context of cyclic carbonate formation. Density functional theory (DFT) studies combined with kinetic data provides a rational for the relative high activity found for these Al(III) complexes, and the data are consistent with a monometallic mechanism. The activity and versatility of these Al(III) complexes has also been evaluated against some state-of-the-art catalysts and the combined results compare favorably in terms of catalyst construction, stability, activity, and applicability.
Journal of the American Chemical Society | 2013
Ana Vázquez-Romero; Nicola Kielland; María José Arévalo; Sara Preciado; Richard Mellanby; Yi Feng; Rodolfo Lavilla; Marc Vendrell
Multicomponent reactions are excellent tools to generate complex structures with broad chemical diversity and fluorescent properties. Herein we describe the adaptation of the fluorescent BODIPY scaffold to multicomponent reaction chemistry with the synthesis of BODIPY adducts with high fluorescence quantum yields and good cell permeability. From this library we identified one BODIPY derivative (PhagoGreen) as a low-pH sensing fluorescent probe that enabled imaging of phagosomal acidification in activated macrophages. The fluorescence emission of PhagoGreen was proportional to the degree of activation of macrophages and could be specifically blocked by bafilomycin A, an inhibitor of phagosomal acidification. PhagoGreen does not impair the normal functions of macrophages and can be used to image phagocytic macrophages in vivo.
Nature Communications | 2015
Lorena Mendive-Tapia; Sara Preciado; Jesús García; Rosario Ramón; Nicola Kielland; Fernando Albericio; Rodolfo Lavilla
Natural peptides show high degrees of specificity in their biological action. However, their therapeutical profile is severely limited by their conformational freedom and metabolic instability. Stapled peptides constitute a solution to these problems and access to these structures lies on a limited number of reactions involving the use of non-natural amino acids. Here, we describe a synthetic strategy for the preparation of unique constrained peptides featuring a covalent bond between tryptophan and phenylalanine or tyrosine residues. The preparation of such peptides is achieved in solution and on solid phase directly from the corresponding sequences having an iodo-aryl amino acid through an intramolecular palladium-catalysed C–H activation process. Moreover, complex topologies arise from the internal stapling of cyclopeptides and double intramolecular arylations within a linear peptide. Finally, as a proof of principle, we report the application to this new stapling method to relevant biologically active compounds.
ChemInform | 2010
Nicola Kielland; Rodolfo Lavilla
Abstract The chapter reviews the classic Reissert reaction, the keystone of a broad family of multicomponent reactions involving azines, electrophilic reagents and nucleophiles to yield N,α-disubstituted dihydroazine adducts. The first sections deal with the standard nucleophilic attack upon activated azines, including asymmetric transformations. Section 5 focuses on the generation of dipolar intermediates by azine activation, and on their subsequent transformation; chiefly in cycloadditions. Lastly, Sect. 6 is primarily devoted to a special branch of this chemistry involving isocyanides. It also covers the reactivity of dihydroazines and reviews the mechanistic proposals for related reactions.
Angewandte Chemie | 2017
Fabio de Moliner; Nicola Kielland; Rodolfo Lavilla; Marc Vendrell
Abstract Biomedical research relies on the fast and accurate profiling of specific biomolecules and cells in a non‐invasive manner. Functional fluorophores are powerful tools for such studies. As these sophisticated structures are often difficult to access through conventional synthetic strategies, new chemical processes have been developed in the past few years. In this Minireview, we describe the most recent advances in the design, preparation, and fine‐tuning of fluorophores by means of multicomponent reactions, C−H activation processes, cycloadditions, and biomolecule‐based chemical transformations.
Nature Communications | 2016
Lorena Mendive-Tapia; Can Zhao; Ahsan Akram; Sara Preciado; Fernando Albericio; Martin Lee; Alan Serrels; Nicola Kielland; Nick D. Read; Rodolfo Lavilla; Marc Vendrell
Fluorescent antimicrobial peptides are promising structures for in situ, real-time imaging of fungal infection. Here we report a fluorogenic probe to image Aspergillus fumigatus directly in human pulmonary tissue. We have developed a fluorogenic Trp-BODIPY amino acid with a spacer-free C-C linkage between Trp and a BODIPY fluorogen, which shows remarkable fluorescence enhancement in hydrophobic microenvironments. The incorporation of our fluorogenic amino acid in short antimicrobial peptides does not impair their selectivity for fungal cells, and enables rapid and direct fungal imaging without any washing steps. We have optimized the stability of our probes in human samples to perform multi-photon imaging of A. fumigatus in ex vivo human tissue. The incorporation of our unique BODIPY fluorogen in biologically relevant peptides will accelerate the development of novel imaging probes with high sensitivity and specificity.
Chemistry: A European Journal | 2010
Nicola Kielland; Federica Catti; Davide Bello; Nicolas Isambert; Ignacio Soteras; F. Javier Luque; Rodolfo Lavilla
New multicomponent reactions of aldehydes, isocyanides, trialkylboron reagents and dipolarophiles have been developed as an efficient route to diverse scaffolds, including aziridines, oxazolidines and poly-substituted pyrrolidines. This chemistry, inspired by a report by Hesse in 1965, is simple and involves mild conditions. Computational studies provide a basis to investigate the stereochemical features observed in the formation of oxazolidines and four-component adducts, and permit identification of potential factors that might influence the outcome of the multicomponent reaction. Thus, a rational screening of all the components and reaction parameters is made to examine the manifold mechanistic pathways and establish the practical limits for standard applications. Finally, intramolecular and solid-supported versions of these reactions bring new synthetic possibilities and practical protocols. Overall, the results describe a new family of multicomponent reactions valuable not only for organic reactivity, but also for combinatorial chemistry and drug discovery.
Chemical Communications | 2012
Nicola Kielland; Rodolfo Lavilla; Young-Tae Chang
Histamine is a biogenic amine with fundamental roles in circulatory and immune systems. We report a fluorescent small molecule (Histamine Blue) for imaging intracellular histamine in live basophils and macrophages. Histamine Blue is a fluorescent mesoionic acid fluoride that turns on upon reaction with histamine. The selective response of Histamine Blue enabled the visualization of intracellular histamine under different physiological conditions.
Angewandte Chemie | 2016
Kranti G. Kishore; Ouldouz Ghashghaei; Carolina Estarellas; M. Mar Mestre; Cristina Monturiol; Nicola Kielland; John M. Kelly; Amanda Fortes Francisco; Shiromani Jayawardhana; Diego Muñoz-Torrero; Belén Pérez; F. Javier Luque; Rocío Gámez-Montaño; Rodolfo Lavilla
Trimethylsilyl chloride is an efficient activating agent for azines in isocyanide-based reactions, which then proceed through a key insertion of the isocyanide into a N-Si bond. The reaction is initiated by N activation of the azine, followed by nucleophilic attack of an isocyanide in a Reissert-type process. Finally, a second equivalent of the same or a different isocyanide inserts into the N-Si bond leading to the final adduct. The use of distinct nucleophiles leads to a variety of α-substituted dihydroazines after a selective cascade process. Based on computational studies, a mechanistic hypothesis for the course of these reactions was proposed. The resulting products exhibit significant activity against Trypanosoma brucei and T. cruzi, featuring favorable drug-like properties and safety profiles.