Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nicola Neumann is active.

Publication


Featured researches published by Nicola Neumann.


international conference of the ieee engineering in medicine and biology society | 2000

The thought translation device (TTD) for completely paralyzed patients

Niels Birbaumer; Andrea Kübler; Nimr Ghanayim; Thilo Hinterberger; Jouri Perelmouter; Jochen Kaiser; Iver H. Iversen; Boris Kotchoubey; Nicola Neumann; Herta Flor

The thought translation device trains locked-in patients to self-regulate slow cortical potentials (SCPs) of their electroencephalogram (EEG). After operant learning of SCP self-control, patients select letters, words or pictograms in a computerized language support program. Results of five respirated, locked-in-patients are described, demonstrating the usefulness of the thought translation device as an alternative communication channel in motivated totally paralyzed patients with amyotrophic lateral sclerosis.


IEEE Transactions on Neural Systems and Rehabilitation Engineering | 2003

The thought-translation device (TTD): neurobehavioral mechanisms and clinical outcome

Niels Birbaumer; Thilo Hinterberger; Andrea Kübler; Nicola Neumann

The thought-translation device (TTD) consists of a training device and spelling program for the completely paralyzed using slow-cortical brain potentials (SCP). During the training phase, the self-regulation of SCPs is learned through visual-auditory feedback and positive reinforcement of SCPs; during the spelling phase, patients select letters or words with their SCPs. A psychophysiological system for detection of cognitive functioning in completely paralyzed patients is an integral part of the TTD. The neurophysiological and anatomical basis of SCP-regulation was investigated by recording of BOLD-response in functional magnetic resonance imaging. Results showed involvement of basal ganglia and premotor cortex for required SCP positivity. The clinical outcome of 11 paralyzed patients using the TTD and quality of life of severely paralyzed patients is described. First attempts to improve learning of brain regulation with transcranial magnetic stimulation were successful.


Experimental Brain Research | 2004

A multimodal brain-based feedback and communication system

Thilo Hinterberger; Nicola Neumann; Mirko Pham; Andrea Kübler; Anke Grether; Nadine Hofmayer; Barbara Wilhelm; Herta Flor; Niels Birbaumer

The Thought Translation Device (TTD) is a brain-computer interface based on the self-regulation of slow cortical potentials (SCPs) and enables completely paralyzed patients to communicate using their brain potentials. Here, an extended version of the TTD is presented that has an auditory and a combined visual and auditory feedback modality added to the standard visual feedback. This feature is necessary for locked-in patients who are no longer able to focus their gaze. In order to test performance of physiological regulation with auditory feedback 54 healthy participants were randomly assigned to visual, auditory or combined visual-auditory feedback of slow cortical potentials. The training consisted of three sessions with 500 trials per session with random assignment of required cortical positivity or negativity in half of the trials. The data show that physiological regulation of SCPs can be learned with auditory and combined auditory and visual feedback although the performance of auditory feedback alone was significantly worse than with visual feedback alone.


Journal of Psychophysiology | 2004

Predictability of Brain-Computer Communication

Andrea Kübler; Nicola Neumann; Barbara Wilhelm; Thilo Hinterberger; Niels Birbaumer

Abstract Since 1996 we have been teaching more than 18 severely or totally paralyzed patients to successfully control the movements of a cursor on a computer screen by means of systematic changes in the amplitudes of their slow cortical potentials (SCPs; Birbaumer, Ghanayim, Hinterberger, Iversen, Kotchoubey et al., 1999). Patients learned regulation of their SCP amplitudes by means of a brain-computer interface (BCI) and on-line feedback about the time course of SCP amplitude shifts, represented by cursor movements on a computer screen. When patients were able to successfully regulate their SCP amplitude, they were trained to use this ability to communicate with friends and caregivers by means of a Language Support Program (Perelmouter, Kotchoubey, Kubler, Taub, & Birbaumer, 1999). Having a reliable predictor of progress in training would be particularly helpful because training patients at their homes requires substantial effort and a positive outcome is desirable given limited personal and financial re...


IEEE Transactions on Biomedical Engineering | 2004

Brain-computer communication and slow cortical potentials

Thilo Hinterberger; Stefan Schmidt; Nicola Neumann; Jürgen Mellinger; Benjamin Blankertz; Gabriel Curio; Niels Birbaumer

A thought translation device (TTD) has been designed to enable direct brain-computer communication using self-regulation of slow cortical potentials (SCPs). However, accuracy of SCP control reveals high intersubject variability. To guarantee the highest possible communication speed, some important aspects of training SCPs are discussed. A baseline correction of SCPs can increase performance. Multichannel recordings show that SCPs are of highest amplitude around the vertex electrode used for feedback, but in some subjects more global distributions were observed. A new method for control of eye movement is presented. Sequential effects of trial-to-trial interaction may also cause difficulties for the user. Finally, psychophysiological factors determining SCP communication are discussed.


Neurorehabilitation and Neural Repair | 2006

Neural Internet: Web Surfing with Brain Potentials for the Completely Paralyzed

Ahmed A. Karim; Thilo Hinterberger; Jürgen Richter; Jürgen Mellinger; Nicola Neumann; Herta Flor; Andrea Kübler; Niels Birbaumer

Neural Internet is a new technological advancement in brain-computer interface research, which enables locked-in patients to operate a Web browser directly with their brain potentials. Neural Internet was successfully tested with a locked-in patient diagnosed with amyotrophic lateral sclerosis rendering him the first paralyzed person to surf the Internet solely by regulating his electrical brain activity. The functioning of Neural Internet and its clinical implications for motor-impaired patients are highlighted.


Neuropsychologia | 2003

Conscious perception of brain states: mental strategies for brain-computer communication.

Nicola Neumann; Andrea Kübler; Jochen Kaiser; Thilo Hinterberger; Niels Birbaumer

Direct brain-computer communication utilises self-regulation of brain potentials to select letters, words or symbols from a computer menu. In this study a completely paralysed (locked-in) patient learnt to produce slow cortical potential (SCP) shifts to operate a binary spelling device. After hundreds of training sessions he gave a detailed description of his mental strategies for self-regulation. His cognitive strategies matched with the electrocortical changes perfectly. Thus he produced a contingent negative variation (CNV) with images of preparation such as an arrow being drawn on a bow. To produce a positive potential shift he imagined the arrow shooting up from the bow. To suppress potential shifts he tried to stop thinking. The study demonstrates that patients become sensitive for their brain states with increasing self-regulation practice. The use of conscious cognitive strategies may, however, be incompatible with the complete automatization of the self-regulation skill.


Progress in Brain Research | 2005

Brain-computer interfaces--the key for the conscious brain locked into a paralyzed body.

Andrea Kübler; Nicola Neumann

Brain-computer interfaces (BCIs) are systems that allow us to translate in real-time the electrical activity of the brain in commands to control devices. They do not rely on muscular activity and can therefore provide communication and control for those who are severely paralyzed (locked-in) due to injury or disease. It has been shown that locked-in patients are able to achieve EEG-controlled cursor or limb movement and patients have successfully communicated by means of a BCI. Current BCIs differ in how the neural activity of the brain is recorded, how subjects (humans and animals) are trained to produce a specific EEG response, how the signals are translated into device commands, and which application is provided to the user. The present review focuses on approaches to BCIs that process the EEG on-line and provide EEG feedback or feedback of results to the user. We regard online processing and feedback cornerstones for routine application of BCIs in the field. Because training patients in their home environment is effortful and personal and financial resources are limited, only few studies on BCI long-term use for communication with paralyzed patients are available. The need for multidisciplinary research, comprising computer science, engineering, neuroscience, and psychology is now being acknowledged by the BCI community. A standard BCI platform, referred to as BCI2000, has been developed, which allows us to better combine and compare the different BCI approaches of different laboratories. As BCI laboratories now also join to unify their expertise and collaborations are funded, we consider it realistic that within few years we will be able to offer a BCI, which will be easy to operate for patients and caregivers.


Journal of Neurology, Neurosurgery, and Psychiatry | 2003

Predictors of successful self control during brain-computer communication

Nicola Neumann; Niels Birbaumer

Objectives: Direct brain-computer communication uses self regulation of brain potentials to select letters, words, or symbols from a computer menu to re-establish communication in severely paralysed patients. However, not all healthy subjects, or all paralysed patients acquire the skill to self regulate their brain potentials, and predictors of successful learning have not been found yet. Predictors are particularly important, because only successful self regulation will in the end lead to efficient brain-computer communication. This study investigates the question whether initial performance in the self regulation of slow cortical potentials of the brain (SCPs) may be positively correlated to later performance and could thus be used as a predictor. Methods: Five severely paralysed patients diagnosed with amyotrophic lateral sclerosis were trained to produce SCP amplitudes of negative and positive polarity by means of visual feedback and operant conditioning strategies. Performance was measured as percentage of correct SCP amplitude shifts. To determine the relation between initial and later performance in SCP self regulation, Spearman’s rank correlations were calculated between maximum and mean performance at the beginning of training (runs 1–30) and mean performance at two later time points (runs 64–93 and 162–191). Results: Spearman’s rank correlations revealed a significant relation between maximum and mean performance in runs 1–30 and mean performance in runs 64–93 (r= 0.9 and 1.0) and maximum and mean performance in runs 1–30 and mean performance in runs 162–191 (r=1.0 and 1.0). Conclusions: Initial performance in the self regulation of SCP is positively correlated with later performance in severely paralysed patients, and thus represents a useful predictor for efficient brain-computer communication.


IEEE Transactions on Neural Systems and Rehabilitation Engineering | 2003

Training locked-in patients: a challenge for the use of brain-computer interfaces

Nicola Neumann; Andrea Kübler

Training severely paralyzed patients to use a brain-computer interface (BCI) for communication poses a number of issues and problems. Over the past six years, we have trained 11 patients to self-regulate their slow cortical brain potentials and to use this skill to move a cursor on a computer screen. This paper describes our experiences with this patient group including the problems of accepting and rejecting patients, communicating and interacting with patients, how training may be affected by social, familial, and institutional circumstances, and the importance of motivation and available reinforcers.

Collaboration


Dive into the Nicola Neumann's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sven Bölte

Stockholm County Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fritz Poustka

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge