Nicolai B. Mortensen
University of Wisconsin-Madison
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nicolai B. Mortensen.
Nature | 2013
T. J. Fudge; Eric J. Steig; Bradley R. Markle; Spruce W. Schoenemann; Qinghua Ding; Kendrick C. Taylor; Joseph R. McConnell; Edward J. Brook; Todd Sowers; James W. C. White; Richard B. Alley; Hai Cheng; Gary D. Clow; Jihong Cole-Dai; Howard Conway; Kurt M. Cuffey; Jon Edwards; R. Lawrence Edwards; Ross Edwards; John M. Fegyveresi; David G. Ferris; Jay A. Johnson; Geoffrey M. Hargreaves; James E. Lee; Olivia J. Maselli; William P. Mason; Kenneth C. McGwire; Logan E. Mitchell; Nicolai B. Mortensen; Peter D. Neff
The cause of warming in the Southern Hemisphere during the most recent deglaciation remains a matter of debate. Hypotheses for a Northern Hemisphere trigger, through oceanic redistributions of heat, are based in part on the abrupt onset of warming seen in East Antarctic ice cores and dated to 18,000 years ago, which is several thousand years after high-latitude Northern Hemisphere summer insolation intensity began increasing from its minimum, approximately 24,000 years ago. An alternative explanation is that local solar insolation changes cause the Southern Hemisphere to warm independently. Here we present results from a new, annually resolved ice-core record from West Antarctica that reconciles these two views. The records show that 18,000 years ago snow accumulation in West Antarctica began increasing, coincident with increasing carbon dioxide concentrations, warming in East Antarctica and cooling in the Northern Hemisphere associated with an abrupt decrease in Atlantic meridional overturning circulation. However, significant warming in West Antarctica began at least 2,000 years earlier. Circum-Antarctic sea-ice decline, driven by increasing local insolation, is the likely cause of this warming. The marine-influenced West Antarctic records suggest a more active role for the Southern Ocean in the onset of deglaciation than is inferred from ice cores in the East Antarctic interior, which are largely isolated from sea-ice changes.
Nature | 2015
Christo Buizert; Betty M. Adrian; Jinho Ahn; Mary R. Albert; Richard B. Alley; Daniel Baggenstos; Thomas K. Bauska; R. Bay; Brian B. Bencivengo; Charles R. Bentley; Edward J. Brook; Nathan Chellman; Gary D. Clow; Jihong Cole-Dai; Howard Conway; Eric D. Cravens; Kurt M. Cuffey; Nelia W. Dunbar; Jon Edwards; John M. Fegyveresi; Dave G. Ferris; T. J. Fudge; Chris J. Gibson; Vasileios Gkinis; Joshua J. Goetz; Stephanie Gregory; Geoffrey M. Hargreaves; Nels Iverson; Jay A. Johnson; Tyler R. Jones
The last glacial period exhibited abrupt Dansgaard–Oeschger climatic oscillations, evidence of which is preserved in a variety of Northern Hemisphere palaeoclimate archives. Ice cores show that Antarctica cooled during the warm phases of the Greenland Dansgaard–Oeschger cycle and vice versa, suggesting an interhemispheric redistribution of heat through a mechanism called the bipolar seesaw. Variations in the Atlantic meridional overturning circulation (AMOC) strength are thought to have been important, but much uncertainty remains regarding the dynamics and trigger of these abrupt events. Key information is contained in the relative phasing of hemispheric climate variations, yet the large, poorly constrained difference between gas age and ice age and the relatively low resolution of methane records from Antarctic ice cores have so far precluded methane-based synchronization at the required sub-centennial precision. Here we use a recently drilled high-accumulation Antarctic ice core to show that, on average, abrupt Greenland warming leads the corresponding Antarctic cooling onset by 218 ± 92 years (2σ) for Dansgaard–Oeschger events, including the Bølling event; Greenland cooling leads the corresponding onset of Antarctic warming by 208 ± 96 years. Our results demonstrate a north-to-south directionality of the abrupt climatic signal, which is propagated to the Southern Hemisphere high latitudes by oceanic rather than atmospheric processes. The similar interpolar phasing of warming and cooling transitions suggests that the transfer time of the climatic signal is independent of the AMOC background state. Our findings confirm a central role for ocean circulation in the bipolar seesaw and provide clear criteria for assessing hypotheses and model simulations of Dansgaard–Oeschger dynamics.
Annals of Glaciology | 2007
Jay A. Johnson; William P. Mason; Alexander J. Shturmakov; Scott T. Haman; Paul J. Sendelbach; Nicolai B. Mortensen; L. Augustin; Kristina R. Dahnert
Abstract The Deep Ice Sheet Coring (DISC) drill developed by Ice Coring and Drilling Services under contract with the US National Science Foundation is an electromechanical ice-drill system designed to take 122mm ice cores to depths of 4000 m. The new drill system was field-tested near Summit camp in central Greenland during the spring/summer of 2006. Testing was conducted to verify the performance of the DISC drill system and its individual components and to determine the modifications required prior to the system’s planned deployment for coring at the WAIS Divide site in Antarctica in the following year. The experiments, results and the drill crew’s experiences with the DISC drill during testing are described and discussed.
Annals of Glaciology | 2007
Nicolai B. Mortensen; Paul J. Sendelbach; Alexander J. Shturmakov
Abstract The deep ice-sheet coring (DISC) drill developed by Ice Coring and Drilling Services under contract to the US National Science Foundation is an electromechanical drill designed to take 122 mm ice cores to depths of 4000 m. Electronic, electrical and control systems are major aspects of the DISC drill. The drill sonde, the down-hole portion of the drill system, requires approximately 5 kW of d.c. power for the cutter and drill motors and instrumentation. Power is transmitted via a drill cable from a modified, commercially available surface d.c. power supply operating at 1000V to power modules in the sonde instrumentation section. These modules regulate the power to the motors to 300 V d.c. and to lower voltages for the instrumentation and control electronics. Cutter and pump motors are controlled by electronics that include motor controllers. There are 20 distinct sensors in the drill sonde which measure conditions such as hole fluid temperature, motor fluid temperature, drill orientation, etc. On-board electronics facilitate communication of control commands and data between the surface and the drill sonde. Electronics also play an integral part in the operation of surface equipment such as the winch in raising and lowering the sonde in the borehole. Overall control of the DISC drill system is provided by a PC-based supervisory control system that allows the drill operators to monitor and control all aspects of the drilling operation.
Annals of Glaciology | 2014
Christopher J. Gibson; Jay A. Johnson; Alexander J. Shturmakov; Nicolai B. Mortensen; Joshua J. Goetz
Abstract The replicate ice-coring system was developed by Ice Drilling Design and Operations (IDDO) for the US National Science Foundation. The design of the system leverages the existing infrastructure of the deep ice-sheet coring (DISC) drill to create a steerable drill capable of recovering replicate core at any targeted depth in an existing borehole. Critical requirements of the system include: collecting up to 400 m of core from the high side of an open hole; maintaining access to the entire borehole for logging tools; collecting up to four cores at a single depth; and operating to a depth of 4000m at −55°C and 34 MPa. The system was developed and tested from 2010 through 2012 and integrates several new mechanical subsystems, including two electromechanical actuators capable of pushing the sonde to any targeted azimuth, new reduced diameter core and screen barrels made from off-the-shelf casing tube, and new cutter heads optimized for the multiple stages of the replicate coring procedure. The system was successfully deployed at West Antarctic Ice Sheet (WAIS) Divide in the 2012/13 field season, recovering 285 m of core from five intentional deviations at four target depths.
Annals of Glaciology | 2014
Nicolai B. Mortensen; Joshua J. Goetz; Christopher J. Gibson; Jay A. Johnson; Alexander J. Shturmakov
Abstract The drilling of a deep borehole in ice is an undertaking that spans several seasons. Over recent decades such drilling has become widespread in both polar regions. Owing to the remoteness of the drill sites, considerable cost is associated with the drilling of a deep borehole of several thousand meters. The replicate coring system allows re-drilling of ice core at select depths within an existing parent borehole. This effectively increases the yield of the existing borehole and permits re-sampling of ice in areas of high scientific value. The replicate coring system achieves this through the combination of actuators, motors, sensors and a computerized control system. The replicate coring drill is a further development of the deep ice-sheet coring (DISC) drill, extending the capabilities of the DISC drill to include replicate coring.
Annals of Glaciology | 2014
Nicolai B. Mortensen; Jay A. Johnson; Alexander J. Shturmakov
Abstract In deep ice-coring, as in many other disciplines, a winching system is involved in the overall operation of the drilling activities. The need to efficiently store the cable on the winch drum is well recognized, and the ‘orthocyclically wound’ approach is often used. This is accomplished by means of a ‘Lebus groove’, along with a level winding scheme of some description. The level wind is usually implemented in one of several ways using some mechanism to synchronize the position of the level wind with the point where the cable meets the winch drum. A novel method using a feedback control system is presented in this paper, introducing a virtually error-free approach to the surprisingly difficult task of level winding.
Annals of Glaciology | 2014
Jay A. Johnson; Alexander J. Shturmakov; Tanner W. Kuhl; Nicolai B. Mortensen; Christopher J. Gibson
Abstract Many of the ice-coring objectives in the Ice Drilling Program Office (IDPO) Long Range Science Plan, such as those in the International Partnerships in Ice Core Sciences (IPICS) 2k array and 40k network, are attainable in many locations with an intermediate depth drill (IDD) that can collect core from a fluid-filled hole down to 1500 m depth. The Ice Drilling Design and Operations (IDDO) group has designed and is in the process of building an agile IDD to meet this objective. The drill tent, power distribution and core-processing systems are an integral part of the IDD, which can be deployed by small aircraft and assembled by hand to minimize logistic requirements. The new drill system will be ready for testing in Greenland beginning in late spring 2014. The first production drilling is scheduled for the 2014/15 field season at the South Pole.
Annals of Glaciology | 2014
Jay A. Johnson; Nicolai B. Mortensen; Christopher J. Gibson; Joshua J. Goetz; Alexander J. Shturmakov
Abstract Drilling the WDC06A borehole at the West Antarctic Ice Sheet (WAIS) Divide with the Deep Ice Sheet Coring (DISC) drill began in December 2007 and was successfully completed in December 2011 to a depth of 3405 m. The design and construction of a replicate coring system for use with the existing DISC drill began in 2010. In January 2012, the new replicate coring system was tested in the parent borehole at WAIS Divide. While a full deviation was not completed during the test period, much was learned about the mechanical, electrical and operational aspects of the system. Extensive testing and modifications were done over the northern/boreal summer to prepare the system for the upcoming and final season of the project. Further tuning of the system continued during the 2012/13 field season at WAIS Divide. This paper identifies the issues found with the system during the initial test season and discusses solutions, methods and testing done to arrive at an operational system.
Annals of Glaciology | 2014
Kristina R. Slawny; Jay A. Johnson; Nicolai B. Mortensen; Christopher J. Gibson; Joshua J. Goetz; Alexander J. Shturmakov; Donald A. Lebar; Anthony W. Wendricks