Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nicolas Biais is active.

Publication


Featured researches published by Nicolas Biais.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Integrin-dependent force transmission to the extracellular matrix by α-actinin triggers adhesion maturation

Pere Roca-Cusachs; Armando del Rio; Eileen Puklin-Faucher; Nils C. Gauthier; Nicolas Biais; Michael P. Sheetz

Significance Mechanical forces transmitted between a cell and its surrounding extracellular matrix determine functions like proliferation or differentiation, and drive processes in development, tumorigenesis, and wound healing. However, the molecules involved in this force transmission remain unclear. Here we show that forces exerted by cells are transmitted to the extracellular matrix through α-actinin molecules via the transmembrane protein integrins. Furthermore, this transmission enables the growth and maturation of adhesion sites to the matrix, and takes place in competition with another molecule submitted to force, talin. This force regulation mechanism may help us understand the role of force in different biological scenarios. Focal adhesions are mechanosensitive elements that enable mechanical communication between cells and the extracellular matrix. Here, we demonstrate a major mechanosensitive pathway in which α-actinin triggers adhesion maturation by linking integrins to actin in nascent adhesions. We show that depletion of the focal adhesion protein α-actinin enhances force generation in initial adhesions on fibronectin, but impairs mechanotransduction in a subsequent step, preventing adhesion maturation. Expression of an α-actinin fragment containing the integrin binding domain, however, dramatically reduces force generation in depleted cells. This behavior can be explained by a competition between talin (which mediates initial adhesion and force generation) and α-actinin for integrin binding. Indeed, we show in an in vitro assay that talin and α-actinin compete for binding to β3 integrins, but cooperate in binding to β1 integrins. Consistently, we find opposite effects of α-actinin depletion and expression of mutants on substrates that bind β3 integrins (fibronectin and vitronectin) versus substrates that only bind β1 integrins (collagen). We thus suggest that nascent adhesions composed of β3 integrins are initially linked to the actin cytoskeleton by talin, and then α-actinin competes with talin to bind β3 integrins. Force transmitted through α-actinin then triggers adhesion maturation. Once adhesions have matured, α-actinin recruitment correlates with force generation, suggesting that α-actinin is the main link transmitting force between integrins and the cytoskeleton in mature adhesions. Such a multistep process enables cells to adjust forces on matrices, unveiling a role of α-actinin that is different from its well-studied function as an actin cross-linker.


Journal of Cell Science | 2010

Cytoskeletal coherence requires myosin-IIA contractility

Yunfei Cai; Olivier Rossier; Nils C. Gauthier; Nicolas Biais; Marc-Antoine Fardin; Xian Zhang; Lawrence W. Miller; Benoit Ladoux; Virginia W. Cornish; Michael P. Sheetz

Maintaining a physical connection across cytoplasm is crucial for many biological processes such as matrix force generation, cell motility, cell shape and tissue development. However, in the absence of stress fibers, the coherent structure that transmits force across the cytoplasm is not understood. We find that nonmuscle myosin-II (NMII) contraction of cytoplasmic actin filaments establishes a coherent cytoskeletal network irrespective of the nature of adhesive contacts. When NMII activity is inhibited during cell spreading by Rho kinase inhibition, blebbistatin, caldesmon overexpression or NMIIA RNAi, the symmetric traction forces are lost and cell spreading persists, causing cytoplasm fragmentation by membrane tension that results in ‘C’ or dendritic shapes. Moreover, local inactivation of NMII by chromophore-assisted laser inactivation causes local loss of coherence. Actin filament polymerization is also required for cytoplasmic coherence, but microtubules and intermediate filaments are dispensable. Loss of cytoplasmic coherence is accompanied by loss of circumferential actin bundles. We suggest that NMIIA creates a coherent actin network through the formation of circumferential actin bundles that mechanically link elements of the peripheral actin cytoskeleton where much of the force is generated during spreading.


PLOS Biology | 2008

Cooperative Retraction of Bundled Type IV Pili Enables Nanonewton Force Generation

Nicolas Biais; Benoit Ladoux; Dustin L. Higashi; Magdalene So; Michael P. Sheetz

The causative agent of gonorrhea, Neisseria gonorrhoeae, bears retractable filamentous appendages called type IV pili (Tfp). Tfp are used by many pathogenic and nonpathogenic bacteria to carry out a number of vital functions, including DNA uptake, twitching motility (crawling over surfaces), and attachment to host cells. In N. gonorrhoeae, Tfp binding to epithelial cells and the mechanical forces associated with this binding stimulate signaling cascades and gene expression that enhance infection. Retraction of a single Tfp filament generates forces of 50–100 piconewtons, but nothing is known, thus far, on the retraction force ability of multiple Tfp filaments, even though each bacterium expresses multiple Tfp and multiple bacteria interact during infection. We designed a micropillar assay system to measure Tfp retraction forces. This system consists of an array of force sensors made of elastic pillars that allow quantification of retraction forces from adherent N. gonorrhoeae bacteria. Electron microscopy and fluorescence microscopy were used in combination with this novel assay to assess the structures of Tfp. We show that Tfp can form bundles, which contain up to 8–10 Tfp filaments, that act as coordinated retractable units with forces up to 10 times greater than single filament retraction forces. Furthermore, single filament retraction forces are transient, whereas bundled filaments produce retraction forces that can be sustained. Alterations of noncovalent protein–protein interactions between Tfp can inhibit both bundle formation and high-amplitude retraction forces. Retraction forces build over time through the recruitment and bundling of multiple Tfp that pull cooperatively to generate forces in the nanonewton range. We propose that Tfp retraction can be synchronized through bundling, that Tfp bundle retraction can generate forces in the nanonewton range in vivo, and that such high forces could affect infection.


The EMBO Journal | 2010

Force generated by actomyosin contraction builds bridges between adhesive contacts

Olivier Rossier; Nils C. Gauthier; Nicolas Biais; Wynn Vonnegut; Marc-Antoine Fardin; Philip Avigan; Evan R Heller; Anurag Mathur; Saba Ghassemi; Michael S. Koeckert; James Hone; Michael P. Sheetz

Extracellular matrices in vivo are heterogeneous structures containing gaps that cells bridge with an actomyosin network. To understand the basis of bridging, we plated cells on surfaces patterned with fibronectin (FN)‐coated stripes separated by non‐adhesive regions. Bridges developed large tensions where concave cell edges were anchored to FN by adhesion sites. Actomyosin complexes assembled near those sites (both actin and myosin filaments) and moved towards the centre of the non‐adhesive regions in a treadmilling network. Inhibition of myosin‐II (MII) or Rho‐kinase collapsed bridges, whereas extension continued over adhesive areas. Inhibition of actin polymerization (latrunculin‐A, jasplakinolide) also collapsed the actomyosin network. We suggest that MII has distinct functions at different bridge regions: (1) at the concave edges of bridges, MIIA force stimulates actin filament assembly at adhesions and (2) in the body of bridges, myosin cross‐links actin filaments and stimulates actomyosin network healing when breaks occur. Both activities ensure turnover of actin networks needed to maintain stable bridges from one adhesive region to another.


Methods in Cell Biology | 2007

Magnetic tweezers in cell biology.

Monica Tanase; Nicolas Biais; Michael P. Sheetz

We discuss herein the theory as well as some design considerations of magnetic tweezers. This method of generating force on magnetic particles bound to biological entities is shown to have a number of advantages over other techniques: forces are exerted in noncontact mode, they can be large in magnitude (order of 10 nanonewtons), and adjustable in direction, static or oscillatory. One apparatus built in our laboratory is described in detail, along with examples of experimental applications and results.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Force-dependent polymorphism in type IV pili reveals hidden epitopes

Nicolas Biais; Dustin L. Higashi; Jasna Brujic; Magdalene So; Michael P. Sheetz

Through evolution, nature has produced exquisite nanometric structures, with features unrealized in the most advanced man-made devices. Type IV pili (Tfp) represent such a structure: 6-nm-wide retractable filamentous appendages found in many bacteria, including human pathogens. Whereas the structure of Neisseria gonorrhoeae Tfp has been defined by conventional structural techniques, it remains difficult to explain the wide spectrum of functions associated with Tfp. Here we uncover a previously undescribed force-induced quaternary structure of the N. gonorrhoeae Tfp. By using a combination of optical and magnetic tweezers, atomic force microscopy, and molecular combing to apply forces on purified Tfp, we demonstrate that Tfp subjected to approximately 100 pN of force will transition into a new conformation. The new structure is roughly 3 times longer and 40% narrower than the original structure. Upon release of the force, the Tfp fiber regains its original form, indicating a reversible transition. Equally important, we show that the force-induced conformation exposes hidden epitopes previously buried in the Tfp fiber. We postulate that this transition provides a means for N. gonorrhoeae to maintain attachment to its host while withstanding intermittent forces encountered in the environment. Our findings demonstrate the need to reassess our understanding of Tfp dynamics and functions. They could also explain the structural diversity of other helical polymers while presenting a unique mechanism for polymer elongation and exemplifying the extreme structural plasticity of biological polymers.


Science | 2009

Traction on Immobilized Netrin-1 Is Sufficient to Reorient Axons

Simon W. Moore; Nicolas Biais; Michael P. Sheetz

Advancing spinal neuron growth cones generate traction forces that can direct the trajectory of the axon. During embryonic development, axons are guided to their target by patterning proteins encountered along their trajectory. These cues can be linked to the cells that produce them or secreted into the extracellular matrix. Whether secreted cues, like netrin-1, provide traction for the growth cone when they become attached to the extracellular matrix is unclear. Advancing spinal com-missural neuron growth cones were shown to generate local forces of 4 to 15 piconewtons but, when confronted with immobilized netrin-1, generated traction forces in excess of 63 piconew-tons on netrin-1 that can redirect the trajectory of the axon.


BMC Biology | 2015

Mechanotransduction: use the force(s)

Ewa Paluch; Celeste M. Nelson; Nicolas Biais; Ben Fabry; Jens Moeller; Beth L. Pruitt; Carina Wollnik; Galina Kudryasheva; Florian Rehfeldt; Walter Federle

Mechanotransduction - how cells sense physical forces and translate them into biochemical and biological responses - is a vibrant and rapidly-progressing field, and is important for a broad range of biological phenomena. This forum explores the role of mechanotransduction in a variety of cellular activities and highlights intriguing questions that deserve further attention.


Cell | 2016

Cytotoxic T Cells Use Mechanical Force to Potentiate Target Cell Killing

Roshni Basu; Benjamin M. Whitlock; Julien Husson; Audrey Le Floc’h; Weiyang Jin; Alon Oyler-Yaniv; Farokh Dotiwala; Grégory Giannone; Claire Hivroz; Nicolas Biais; Judy Lieberman; Lance C. Kam; Morgan Huse

The immunological synapse formed between a cytotoxic T lymphocyte (CTL) and an infected or transformed target cell is a physically active structure capable of exerting mechanical force. Here, we investigated whether synaptic forces promote the destruction of target cells. CTLs kill by secreting toxic proteases and the pore forming protein perforin into the synapse. Biophysical experiments revealed a striking correlation between the magnitude of force exertion across the synapse and the speed of perforin pore formation on the target cell, implying that force potentiates cytotoxicity by enhancing perforin activity. Consistent with this interpretation, we found that increasing target cell tension augmented pore formation by perforin and killing by CTLs. Our data also indicate that CTLs coordinate perforin release and force exertion in space and time. These results reveal an unappreciated physical dimension to lymphocyte function and demonstrate that cells use mechanical forces to control the activity of outgoing chemical signals.


Molecular Biology of the Cell | 2011

Filamin depletion blocks endoplasmic spreading and destabilizes force-bearing adhesions

Christopher D. Lynch; Nils C. Gauthier; Nicolas Biais; Andre M. Lazar; Pere Roca-Cusachs; Cheng-han Yu; Michael P. Sheetz

Cells severely depleted of filamins were observed to have numerous motility-related defects, including a defect in endoplasmic spreading; smaller, more dynamic focal adhesions; and an inability to sustain high levels of traction force. The endoplasm as a separate mechanical unit spread by pulling forces is also discussed.

Collaboration


Dive into the Nicolas Biais's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Benoit Ladoux

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge