Magdalene So
University of Arizona
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Magdalene So.
Nature | 2000
Alexey J. Merz; Magdalene So; Michael P. Sheetz
Twitching and social gliding motility allow many Gram negative bacteria to crawl along surfaces, and are implicated in a wide range of biological functions. Type IV pili (Tfp) are required for twitching and social gliding, but the mechanism by which these filaments promote motility has remained enigmatic. Here we use laser tweezers to show that Tfp forcefully retract. Neisseria gonorrhoeae cells that produce Tfp actively crawl on a glass surface and form adherent microcolonies. When laser tweezers are used to place and hold cells near a microcolony, retractile forces pull the cells toward the microcolony. In quantitative experiments, the Tfp of immobilized bacteria bind to latex beads and retract, pulling beads from the tweezers at forces that can exceed 80 pN. Episodes of retraction terminate with release or breakage of the Tfp tether. Both motility and retraction mediated by Tfp occur at about 1 µm s-1 and require protein synthesis and function of the PilT protein. Our experiments establish that Tfp filaments retract, generate substantial force and directly mediate cell movement.
Proceedings of the National Academy of Sciences of the United States of America | 2002
Berenike Maier; Laura Potter; Magdalene So; Hank S. Seifert; Michael P. Sheetz
Force production by type IV pilus retraction is critical for infectivity of Neisseria gonorrhoeae and DNA transfer. We investigated the roles of pilus number and the retraction motor, PilT, in force generation in vivo at the single-molecule level and found that individual retraction events are generated by a single pilus fiber, and only one PilT complex powers retraction. Retraction velocity is constant at low forces but decreases at forces greater than 40 pN, giving a remarkably high average stall force of 110 ± 30 pN. Further insights into the molecular mechanism of force generation are gained from the effect of ATP-depletion, which reduces the rate of retraction but not the stall force. Energetic considerations suggest that more than one ATP is involved in the removal of a single pilin subunit from a pilus. The results are most consistent with a model in which the ATPase PilT forms an oligomer that disassembles the pilus by a cooperative conformational change.
Cell | 1982
Thomas F. Meyer; Natania Mlawer; Magdalene So
The Neisseria gonorrhoeae pilus protein is one of the major antigenic determinants on the cells surface. It is comprised of identical subunits of approximately 18 kd and plays a role in the infectivity and virulence of the organism. We have cloned the gene encoding a gonococcal pilus protein into Escherichia coli, and, using one of these clones as a probe in hybridization studies, we have shown that conversion of the pilus positive to pilus negative state in N. gonorrhoeae involves chromosomal rearrangement. Although the pilus protein is produced by E. coli, it does not appear to be assembled on the surface of the cell in native form.
Molecular Microbiology | 1993
Xavier Nassif; Jonathan Lowy; Paula E. Stenberg; Peadar O'Gaora; Amir Ganji; Magdalene So
Pili have been shown to play an essential role in the adhesion of Neisseria meningitidis to epithelial cells. However, among piliated strains, both inter‐ and intrastrain variability exist with respect to their degree of adhesion to epithelial cells in vitro (Virji et al., 1992). This suggests that factors other than the presence of pili per se are involved in this process. The N. meningitidis pilin subunit undergoes extensive antigenic variation. Piliated low‐ and high‐adhesive derivatives of the same N. meningitidis strain were selected and the nucleotide sequence of the pilin gene expressed in each was determined. The highly adhesive derivatives had the same pilin sequence. The alleles encoding the pilin subunit of the low‐adhesive derivatives were completely different from the one found in the high‐adhesive isolates. Using polyclonal antibodies raised against one hyperadhesive variant, it was confirmed that the low‐adhesive piliated derivatives expressed pilin variants antigenically different from the highly adhesive strains. The role of antigenic variation in the adhesive process of N. meningitidis was confirmed by performing allelic exchanges of the pilE locus between low‐and high‐adhesive isolates. Antigenic variation has been considered a means by which virulent bacteria evade the host immune system. This work provides genetic proof that a bacterial pathogen, N. meningitidis, can use antigenic variation to modulate their degree of virulence.
Molecular Microbiology | 1995
Igor Stojijkovic; Vivian Hwa; Luc Martin; Peadar O'Gaora; Xavier Nassif; Fred Heffron; Magdalene So
The Neisseris meningitidis haemoglobin receptor gene, hmbR, was cloned by complementation in a porphyrin‐requiring Escherichia coli mutant. hmbR encodes an 89.5 kDa outer membrane protein which shares amino acid homology with the TonB‐dependent receptors of Gram‐negative bacteria. HmbR had the highest similarity to Neisseria transferrin and lactoferrin receptors. The utilization of haemoglobin as an iron source required internalization of the haemin moiety by the cell. The mechanism of haemin internalization via the haemoglobin receptor was TonB‐dependent in E. coli. A N. meningitidis hmbR mutant was unable to use haemoglobin but could still use haemin as a sole iron source. The existence of a second N. meningitidis receptor gene, specific for haemin, was shown by the isolation of cosmids which did not hybridize with the hmbR probe, but which were able to complement an E. coli hemA aroB mutant on haemin‐supplemented plates. The N. meningitidis hmbR mutant was attenuated in an infant rat model for meningococcal infection, indicating that haemoglobin utilization is important for N. meningitidis virulence.
Molecular Microbiology | 1999
Alexey J. Merz; Caroline A. Enns; Magdalene So
The pathogenic Neisseriae Neisseria meningitidis and Neisseria gonorrhoeae, initiate colonization by attaching to host cells using type IV pili. Subsequent adhesive interactions are mediated through the binding of other bacterial adhesins, in particular the Opa family of outer membrane proteins. Here, we have shown that pilus‐mediated adhesion to host cells by either meningococci or gonococci triggers the rapid, localized formation of dramatic cortical plaques in host epithelial cells. Cortical plaques are enriched in both components of the cortical cytoskeleton and a subset of integral membrane proteins. These include: CD44v3, a heparan sulphate proteoglycan that may serve as an Opa receptor; EGFR, a receptor tyrosine kinase; CD44 and ICAM‐1, adhesion molecules known to mediate inflammatory responses; f‐actin; and ezrin, a component that tethers membrane components to the actin cytoskeleton. Genetic analyses reveal that cortical plaque formation is highly adhesin specific. Both pilE and pilC null mutants fail to induce cortical plaques, indicating that neisserial type IV pili are required for cortical plaque induction. Mutations in pilT, a gene required for pilus‐mediated twitching motility, confer a partial defect in cortical plaque formation. In contrast to type IV pili, many other neisserial surface structures are not involved in cortical plaque induction, including Opa, Opc, glycolipid GgO4‐binding adhesins, polysialic acid capsule or a particular lipooligosaccharide variant. Furthermore, it is shown that type IV pili allow gonococci to overcome the inhibitory effect of heparin, a soluble receptor analogue, on gonococcal invasion of Chang and A431 epithelial cells. These and other observations strongly suggest that type IV pili play an active role in initiating neisserial infection of the mucosal surface in vivo. The functions of type IV pili and other neisserial adhesins are discussed in the specific context of the mucosal microenvironment, and a multistep model for neisserial colonization of mucosal epithelia is proposed.
Molecular Microbiology | 1993
Nancy A. Buchmeier; Craig J. Lipps; Magdalene So; Fred Heffron
Mutations in the genes recA and recBC were constructed in the virulent Salmonella typhimurium strain 14028s. Both the recA and recBC mutants were attenuated in mice. The mutants were also sensitive to killing by macrophages in vitro. The recombination mutants were no longer macrophage sensitive in a variant line of J774 macrophage‐like cells that fail to generate superoxide. This suggests that repair of DNA damage by Salmonella is necessary for full virulence in vivo and that the oxidative burst of phagocytes is one source of such DNA damage.
Cell | 1985
Ellyn Segal; Elizabeth Billyard; Magdalene So; Sabine Storzbach; Thomas F. Meyer
N. gonorrhoeae undergoes pilus phase and antigenic variation. During phase variation, the pilin gene is turned on and off at high frequencies. Two loci on the gonococcal chromosome from strain MS11 function as expression sites for the pilin gene (pilE1 and pilE2); many other sites apparently contain silent variant pilin sequences. We reported previously that during pilus phase variation, when cells switch from the pilus expressing state (P+) to the nonexpressing state (P-), genome rearrangement occurs. We have examined phase variation in more detail, and we report that in most P+ to P- switches a deletion of pilin gene information occurs in one or both expression sites. This deletion is due to either a simple or a multiple-step recombination event involving directly repeated sequences in the expression loci. The deletion explains the state of some P- cells, but not all. In the latter cells pilin expression is probably controlled by an undefined regulator.
Molecular Microbiology | 1997
Lan Lin; Patricia Ayala; Jason A. Larson; Martha H. Mulks; Minoru Fukuda; Sven R. Carlsson; Caroline A. Enns; Magdalene So
Infection of human epithelial cells by Neisseria meningitidis (MC) and Neisseria gonorrhoeae (GC) increases the rate of degradation of LAMP1, a major integral membrane glycoprotein of late endosomes and lysosomes. Several lines of evidence indicate that the neisserial IgA1 protease is directly responsible for this LAMP1 degradation. LAMP1 contains an IgA1‐like hinge region with potential cleavage sites for the neisserial type 1 and type 2 IgA1 proteases. Neisserial type 2 IgA1 protease cleaves purified LAMP1 in vitro. Unlike its wild‐type isogenic parent, an iga− mutant of N. gonorrhoeae cannot affect LAMP1 turnover and its growth in epithelial cells is dramatically reduced. Thus, IgA1 protease cleavage of LAMP1 promotes intracellular survival of pathogenic Neisseria spp.
PLOS ONE | 2010
Pradeep Reddy Marri; Mary Paniscus; Nathan J. Weyand; María A. Rendón; Diana R. Hernández; Dustin L. Higashi; Erica Sodergren; George M. Weinstock; Steven D. Rounsley; Magdalene So
Commensal bacteria comprise a large part of the microbial world, playing important roles in human development, health and disease. However, little is known about the genomic content of commensals or how related they are to their pathogenic counterparts. The genus Neisseria, containing both commensal and pathogenic species, provides an excellent opportunity to study these issues. We undertook a comprehensive sequencing and analysis of human commensal and pathogenic Neisseria genomes. Commensals have an extensive repertoire of virulence alleles, a large fraction of which has been exchanged among Neisseria species. Commensals also have the genetic capacity to donate DNA to, and take up DNA from, other Neisseria. Our findings strongly suggest that commensal Neisseria serve as reservoirs of virulence alleles, and that they engage extensively in genetic exchange.