Nicolas Carels
Oswaldo Cruz Foundation
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nicolas Carels.
Advances in Botanical Research | 2009
Nicolas Carels
Abstract Since the ratification of the Kyoto protocol, a significant effort has been made worldwide to boost biofuels with the expectation of a positive contribution to renewable fuel and greenhouse gas reduction. The initial recommendations were generally not acted upon except in some particular cases, such as Brazil and Vietnam. The positive contribution of first generation biofuels has been challenged because they rely on limited arable land availability, they need substantial energy inputs, and they compete with wildlife and food crops. However, bioethanol and biodiesel proved their compatibility with existing technologies and prepared the transition to second and third generation biofuels. Countries such as Europe, with adverse climatic conditions and limited availability of arable land and crop options, are already investigating technologies for cellulosic ethanol and microdiesel. Developing countries, on the other hand, often have extended areas of land that are not usable for agriculture with currently available crops. Jatropha curcas L. proved to be an opportunistic crop in tropical areas in these unfavorable environments. For this reason, a review on the features and technological achievements obtained with this new crop is welcome. This review covers the (i) agronomy, (ii) oil production, (iii) alkyl ester production, (iv) biofuel features, (v) toxicity, (vi) plant breeding, and (vii) crop expansion of J. curcas .
Fungal Biology | 2008
Eduardo Fernandes Formighieri; Ricardo Augusto Tiburcio; Eduardo Dutra de Armas; Francisco Javier Medrano; Hugo Shimo; Nicolas Carels; Aristóteles Góes-Neto; Carolina Cotomacci; Marcelo Falsarella Carazzolle; Naiara Sardinha-Pinto; Daniela P.T. Thomazella; Johana Rincones; Luciano Antonio Digiampietri; Dirce Maria Carraro; Ana M. Azeredo-Espin; Sérgio F. dos Reis; Ana Carolina Deckmann; Karina Peres Gramacho; Marilda de Souza Gonçalves; José Pereira de Moura Neto; Luciana Veiga Barbosa; Lyndel W. Meinhardt; Julio Cezar M. Cascardo; Gonçalo Amarante Guimarães Pereira
We present here the sequence of the mitochondrial genome of the basidiomycete phytopathogenic hemibiotrophic fungus Moniliophthora perniciosa, causal agent of the Witches Broom Disease in Theobroma cacao. The DNA is a circular molecule of 109,103 base pairs, with 31.9% GC, and is the largest sequenced so far. This size is due essentially to the presence of numerous non-conserved hypothetical ORFs. It contains the 14 genes coding for proteins involved in the oxidative phosphorylation, the two rRNA genes, one ORF coding for a ribosomal protein (rps3), and a set of 26 tRNA genes that recognize codons for all amino acids. Seven homing endonucleases are located inside introns. Except atp8, all conserved known genes are in the same orientation. Phylogenetic analysis based on the cox genes agrees with the commonly accepted fungal taxonomy. An uncommon feature of this mitochondrial genome is the presence of a region that contains a set of four, relatively small, nested, inverted repeats enclosing two genes coding for polymerases with an invertron-type structure and three conserved hypothetical genes interpreted as the stable integration of a mitochondrial linear plasmid. The integration of this plasmid seems to be a recent evolutionary event that could have implications in fungal biology. This sequence is available under GenBank accession number AY376688.
PLOS Neglected Tropical Diseases | 2012
Fabio Faria da Mota; Lourena Pinheiro Marinho; Carlos José de Carvalho Moreira; Marli Maria Lima; C.B. Mello; Eloi S. Garcia; Nicolas Carels; Patrícia Azambuja
Background Chagas disease is a trypanosomiasis whose agent is the protozoan parasite Trypanosoma cruzi, which is transmitted to humans by hematophagous bugs known as triatomines. Even though insecticide treatments allow effective control of these bugs in most Latin American countries where Chagas disease is endemic, the disease still affects a large proportion of the population of South America. The features of the disease in humans have been extensively studied, and the genome of the parasite has been sequenced, but no effective drug is yet available to treat Chagas disease. The digestive tract of the insect vectors in which T. cruzi develops has been much less well investigated than blood from its human hosts and constitutes a dynamic environment with very different conditions. Thus, we investigated the composition of the predominant bacterial species of the microbiota in insect vectors from Rhodnius, Triatoma, Panstrongylus and Dipetalogaster genera. Methodology/Principal Findings Microbiota of triatomine guts were investigated using cultivation-independent methods, i.e., phylogenetic analysis of 16s rDNA using denaturing gradient gel electrophoresis (DGGE) and cloned-based sequencing. The Chao index showed that the diversity of bacterial species in triatomine guts is low, comprising fewer than 20 predominant species, and that these species vary between insect species. The analyses showed that Serratia predominates in Rhodnius, Arsenophonus predominates in Triatoma and Panstrongylus, while Candidatus Rohrkolberia predominates in Dipetalogaster. Conclusions/Significance The microbiota of triatomine guts represents one of the factors that may interfere with T. cruzi transmission and virulence in humans. The knowledge of its composition according to insect species is important for designing measures of biological control for T. cruzi. We found that the predominant species of the bacterial microbiota in triatomines form a group of low complexity whose structure differs according to the vector genus.
Parasites & Vectors | 2015
Marcia Gumiel; Fabio Faria da Mota; Vanessa de Sousa Rizzo; Otília Sarquis; Daniele P. Castro; Marli Maria Lima; Eloi S. Garcia; Nicolas Carels; Patrícia Azambuja
BackgroundChagas disease is caused by Trypanosoma cruzi, which is transmitted by triatomine vectors. The northeastern region of Brazil is endemic for Chagas disease and has the largest diversity of triatomine species. T. cruzi development in its triatomine vector depends on diverse factors, including the composition of bacterial gut microbiota.MethodsWe characterized the triatomines captured in the municipality of Russas (Ceará) by sequencing the cytochrome c oxidase subunit I (COI) gene. The composition of the bacterial community in the gut of peridomestic Triatoma brasiliensis and Triatoma pseudomaculata was investigated using culture independent methods based on the amplification of the 16S rRNA gene by polymerase chain reaction (PCR), denaturing gradient gel electrophoresis (DGGE), DNA fragment cloning, Sanger sequencing and 454 pyrosequencing. Additionally, we identified TcI and TcII types of T. cruzi by sequencing amplicons from the gut metagenomic DNA with primers for the mini-exon gene.ResultsTriatomines collected in the peridomestic ecotopes were diagnosed as T. pseudomaculata and T. brasiliensis by comparing their COI sequence with GenBank. The rate of infection by T. cruzi in adult triatomines reached 80% for T. pseudomaculata and 90% for T. brasiliensis. According to the DNA sequences from the DGGE bands, the triatomine gut microbiota was primarily composed of Proteobacteria and Actinobacteria. However, Firmicutes and Bacteroidetes were also detected, although in much lower proportions. Serratia was the main genus, as it was encountered in all samples analyzed by DGGE and 454 pyrosequencing. Members of Corynebacterinae, a suborder of the Actinomycetales, formed the next most important group. The cloning and sequencing of full-length 16S rRNA genes confirmed the presence of Serratia marcescens, Dietzia sp., Gordonia terrae, Corynebacterium stationis and Corynebacterium glutamicum.ConclusionsThe study of the bacterial microbiota in the triatomine gut has gained increased attention because of the possible role it may play in the epidemiology of Chagas disease by competing with T. cruzi. Culture independent methods have shown that the bacterial composition of the microbiota in the guts of peridomestic triatomines is made up by only few bacterial species.
Tree Genetics & Genomes | 2010
L. Lima; Karina Peres Gramacho; José Luis Pires; Didier Clément; Uilson Vanderlei Lopes; Nicolas Carels; Abelmon Gesteira; Fernanda Amato Gaiotto; Julio Cezar M. Cascardo; Fabienne Micheli
In this study, we report results of the detection and analysis of SSR markers derived of cacao–Moniliophthora perniciosa expressed sequence tags (ESTs) in relation to cacao resistance to witches’ broom disease (WBD), and we compare the polymorphism of those ESTs (EST-simple sequence repeat (SSR)) with classical neutral SSR markers. A total of 3,487 ESTs was used in this investigation. SSRs were identified in 430 sequences: 277 from the resistant genotype TSH 1188 and 153 from the susceptible one Catongo, totalizing 505 EST-SSRs with three types of motifs: dinucleotides (72.1%), trinucleotides (27.3%), and tetranucleotides (0.6%). EST-SSRs were classified into 16 main categories; most of the EST-SSRs belonged to “Unknown function” and “No homology” categories (45.82%). A high frequency of SSRs was found in the 5’UTR and in the ORF (about 27%) and a low frequency was observed in the 3’UTR (about 8%). Forty-nine EST-SSR primers were designed and evaluated in 21 cacao accessions, 12 revealed polymorphism, having 47 alleles in total, with an average of 3.92 alleles per locus. On the other hand, the 11 genomic SSR markers revealed a total of 47 alleles, with an average of 5.22 alleles per locus. The association of EST-SSR with the genomic SSR enhanced the analysis of genetic distance among the genotypes. Among the 12 polymorphic EST-SSR markers, two were mapped on the F2 Sca 6u2009×u2009ICS 1 population reference for WBD resistance.
Theoretical Biology and Medical Modelling | 2016
Nicolas Carels; Lizânia Borges Spinassé; Tatiana M. Tilli; Jack A. Tuszynski
In this review, we report on breast cancer’s molecular features and on how high throughput technologies are helping in understanding the dynamics of tumorigenesis and cancer progression with the aim of developing precision medicine methods. We first address the current state of the art in breast cancer therapies and challenges in order to progress towards its cure. Then, we show how the interaction of high-throughput technologies with in silico modeling has led to set up useful inferences for promising strategies of target-specific therapies with low secondary effect incidence for patients. Finally, we discuss the challenge of pharmacogenetics in the clinical practice of cancer therapy. All these issues are explored within the context of precision medicine.
PLOS ONE | 2013
Luis Caetano M. Antunes; Jun Han; Jingxi Pan; Carlos Moreira; Patrícia Azambuja; Christoph H. Borchers; Nicolas Carels
Chagas disease is a trypanosomiasis whose causative agent is the protozoan parasite Trypanosoma cruzi, which is transmitted to humans by hematophagous insects known as triatomines and affects a large proportion of South America. The digestive tract of the insect vectors in which T. cruzi develops constitutes a dynamic environment that affects the development of the parasite. Thus, we set out to investigate the chemical composition of the triatomine intestinal tract through a metabolomics approach. We performed Direct Infusion Fourier Transform Ion Cyclotron Resonance Mass Spectrometry on fecal samples of three triatomine species (Rhodnius prolixus, Triatoma infestans, Panstrongylus megistus) fed with rabbit blood. We then identified groups of metabolites whose frequencies were either uniform in all species or enriched in each of them. By querying the Human Metabolome Database, we obtained putative identities of the metabolites of interest. We found that a core group of metabolites with uniform frequencies in all species represented approximately 80% of the molecules detected, whereas the other 20% varied among triatomine species. The uniform core was composed of metabolites of various categories, including fatty acids, steroids, glycerolipids, nucleotides, sugars, and others. Nevertheless, the metabolic fingerprint of triatomine feces differs depending on the species considered. The variable core was mainly composed of prenol lipids, amino acids, glycerolipids, steroids, phenols, fatty acids and derivatives, benzoic acid and derivatives, flavonoids, glycerophospholipids, benzopyrans, and quinolines. Triatomine feces constitute a rich and varied chemical medium whose constituents are likely to affect T. cruzi development and infectivity. The complexity of the fecal metabolome of triatomines suggests that it may affect triatomine vector competence for specific T. cruzi strains. Knowledge of the chemical environment of T. cruzi in its invertebrate host is likely to generate new ways to understand the factors influencing parasite proliferation as well as methods to control Chagas disease.
PLOS ONE | 2015
Nicolas Carels; Tatiana M. Tilli; Jack A. Tuszynski
In this report, we describe a strategy for the optimized selection of protein targets suitable for drug development against neoplastic diseases taking the particular case of breast cancer as an example. We combined human interactome and transcriptome data from malignant and control cell lines because highly connected proteins that are up-regulated in malignant cell lines are expected to be suitable protein targets for chemotherapy with a lower rate of undesirable side effects. We normalized transcriptome data and applied a statistic treatment to objectively extract the sub-networks of down- and up-regulated genes whose proteins effectively interact. We chose the most connected ones that act as protein hubs, most being in the signaling network. We show that the protein targets effectively identified by the combination of protein connectivity and differential expression are known as suitable targets for the successful chemotherapy of breast cancer. Interestingly, we found additional proteins, not generally targeted by drug treatments, which might justify the extension of existing formulation by addition of inhibitors designed against these proteins with the consequence of improving therapeutic outcomes. The molecular alterations observed in breast cancer cell lines represent either driver events and/or driver pathways that are necessary for breast cancer development or progression. However, it is clear that signaling mechanisms of the luminal A, B and triple negative subtypes are different. Furthermore, the up- and down-regulated networks predicted subtype-specific drug targets and possible compensation circuits between up- and down-regulated genes. We believe these results may have significant clinical implications in the personalized treatment of cancer patients allowing an objective approach to the recycling of the arsenal of available drugs to the specific case of each breast cancer given their distinct qualitative and quantitative molecular traits.
Biotechnology Journal | 2015
Alexandre Alonso Alves; Bruno Galvêas Laviola; Eduardo Fernandes Formighieri; Nicolas Carels
Development of dedicated perennial crops has been indicated as a strategic action to meet the growing demand for biofuels. Breeding of perennial crops,however, is often time- and resource-consuming. As genomics offers a platform from which to learn more about the relationships of genes and phenotypes,its operational use in the context of breeding programs through strategies such as genomic selection promises to foster the development of perennial crops dedicated to biodiesel production by increasing the efficiency of breeding programs and by shortening the length of the breeding cycles.
Oncotarget | 2016
Tatiana M. Tilli; Nicolas Carels; Jack A. Tuszynski; Manijeh Pasdar
Network-based strategies provided by systems biology are attractive tools for cancer therapy. Modulation of cancer networks by anticancer drugs may alter the response of malignant cells and/or drive network re-organization into the inhibition of cancer progression. Previously, using systems biology approach and cancer signaling networks, we identified top-5 highly expressed and connected proteins (HSP90AB1, CSNK2B, TK1, YWHAB and VIM) in the invasive MDA-MB-231 breast cancer cell line. Here, we have knocked down the expression of these proteins, individually or together using siRNAs. The transfected cell lines were assessed for in vitro cell growth, colony formation, migration and invasion relative to control transfected MDA-MB-231, the non-invasive MCF-7 breast carcinoma cell line and the non-tumoral mammary epithelial cell line MCF-10A. The knockdown of the top-5 upregulated connectivity hubs successfully inhibited the in vitro proliferation, colony formation, anchorage independence, migration and invasion in MDA-MB-231 cells; with minimal effects in the control transfected MDA-MB-231 cells or MCF-7 and MCF-10A cells. The in vitro validation of bioinformatics predictions regarding optimized multi-target selection for therapy suggests that protein expression levels together with protein-protein interaction network analysis may provide an optimized combinatorial target selection for a highly effective anti-metastatic precision therapy in triple-negative breast cancer. This approach increases the ability to identify not only druggable hubs as essential targets for cancer survival, but also interactions most susceptible to synergistic drug action. The data provided in this report constitute a preliminary step toward the personalized clinical application of our strategy to optimize the therapeutic use of anti-cancer drugs.