Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nicolas Corradi is active.

Publication


Featured researches published by Nicolas Corradi.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis

Emilie Tisserant; Mathilde Malbreil; Alan Kuo; Annegret Kohler; Aikaterini Symeonidi; Raffaella Balestrini; Philippe Charron; Nina Duensing; Nicolas Frei dit Frey; Vivienne Gianinazzi-Pearson; Luz B. Gilbert; Yoshihiro Handa; Joshua R. Herr; Mohamed Hijri; Raman Koul; Masayoshi Kawaguchi; Franziska Krajinski; Peter J. Lammers; Frédéric Masclaux; Claude Murat; Emmanuelle Morin; Steve Ndikumana; Marco Pagni; Denis Petitpierre; Natalia Requena; Pawel Rosikiewicz; Rohan Riley; Katsuharu Saito; Hélène San Clemente; Harris Shapiro

Significance The arbuscular mycorrhizal symbiosis between fungi of the Glomeromycota phylum and plants involves more than two-thirds of all known plant species, including important crop species. This mutualistic symbiosis, involving one of the oldest fungal lineages, is arguably the most ecologically and agriculturally important symbiosis in terrestrial ecosystems. The Glomeromycota are unique in that their spores and coenocytic hyphae contain hundreds of nuclei in a common cytoplasm, which raises important questions about the natural selection, population genetics, and gene expression of these highly unusual organisms. Study of the genome of Rhizophagus irregularis provides insight into genes involved in obligate biotrophy and mycorrhizal symbioses and the evolution of an ancient asexual organism, and thus is of fundamental importance to the field of genome evolution. The mutualistic symbiosis involving Glomeromycota, a distinctive phylum of early diverging Fungi, is widely hypothesized to have promoted the evolution of land plants during the middle Paleozoic. These arbuscular mycorrhizal fungi (AMF) perform vital functions in the phosphorus cycle that are fundamental to sustainable crop plant productivity. The unusual biological features of AMF have long fascinated evolutionary biologists. The coenocytic hyphae host a community of hundreds of nuclei and reproduce clonally through large multinucleated spores. It has been suggested that the AMF maintain a stable assemblage of several different genomes during the life cycle, but this genomic organization has been questioned. Here we introduce the 153-Mb haploid genome of Rhizophagus irregularis and its repertoire of 28,232 genes. The observed low level of genome polymorphism (0.43 SNP per kb) is not consistent with the occurrence of multiple, highly diverged genomes. The expansion of mating-related genes suggests the existence of cryptic sex-related processes. A comparison of gene categories confirms that R. irregularis is close to the Mucoromycotina. The AMF obligate biotrophy is not explained by genome erosion or any related loss of metabolic complexity in central metabolism, but is marked by a lack of genes encoding plant cell wall-degrading enzymes and of genes involved in toxin and thiamine synthesis. A battery of mycorrhiza-induced secreted proteins is expressed in symbiotic tissues. The present comprehensive repertoire of R. irregularis genes provides a basis for future research on symbiosis-related mechanisms in Glomeromycota.


Current Biology | 2008

Microsporidia Evolved from Ancestral Sexual Fungi

Soo Chan Lee; Nicolas Corradi; Edmond J. Byrnes; Santiago Torres-Martínez; Fred S. Dietrich; Patrick J. Keeling; Joseph Heitman

Microsporidia are obligate, intracellular eukaryotic pathogens that infect animal cells, including humans [1]. Previous studies suggested microsporidia share a common ancestor with fungi [2-7]. However, the exact nature of this phylogenetic relationship is unclear because of unusual features of microsporidial genomes, which are compact with fewer and highly divergent genes [8]. As a consequence, it is unclear whether microsporidia evolved from a specific fungal lineage, or whether microsporidia are a sister group to all fungi. Here, we present evidence addressing this controversial question that is independent of sequence-based phylogenetic reconstruction, but rather based on genome structure. In the zygomycete basal fungal lineage, the sex locus is a syntenic gene cluster governing sexual reproduction in which a high mobility group (HMG) transcription-factor gene is flanked by triose-phosphate transporter (TPT) and RNA helicase genes [9]. Strikingly, microsporidian genomes harbor a sex-related locus with the same genes in the same order. Genome-wide synteny analysis reveals multiple other loci conserved between microsporidia and zygomycetes to the exclusion of all other fungal lineages with sequenced genomes. These findings support the hypothesis that microsporidia are true fungi that descended from a zygomycete ancestor and suggest microsporidia may have an extant sexual cycle.


Mycologia | 2016

A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data

Joseph W. Spatafora; Ying Chang; Gerald L. Benny; Katy Lazarus; Matthew E. Smith; Mary L. Berbee; Gregory Bonito; Nicolas Corradi; Igor V. Grigoriev; Andrii P. Gryganskyi; Timothy Y. James; Kerry O'Donnell; Robert W. Roberson; Thomas N. Taylor; Jessie K. Uehling; Rytas Vilgalys; Merlin M. White; Jason E. Stajich

Zygomycete fungi were classified as a single phylum, Zygomycota, based on sexual reproduction by zygospores, frequent asexual reproduction by sporangia, absence of multicellular sporocarps, and production of coenocytic hyphae, all with some exceptions. Molecular phylogenies based on one or a few genes did not support the monophyly of the phylum, however, and the phylum was subsequently abandoned. Here we present phylogenetic analyses of a genome-scale data set for 46 taxa, including 25 zygomycetes and 192 proteins, and we demonstrate that zygomycetes comprise two major clades that form a paraphyletic grade. A formal phylogenetic classification is proposed herein and includes two phyla, six subphyla, four classes and 16 orders. On the basis of these results, the phyla Mucoromycota and Zoopagomycota are circumscribed. Zoopagomycota comprises Entomophtoromycotina, Kickxellomycotina and Zoopagomycotina; it constitutes the earliest diverging lineage of zygomycetes and contains species that are primarily parasites and pathogens of small animals (e.g. amoeba, insects, etc.) and other fungi, i.e. mycoparasites. Mucoromycota comprises Glomeromycotina, Mortierellomycotina, and Mucoromycotina and is sister to Dikarya. It is the more derived clade of zygomycetes and mainly consists of mycorrhizal fungi, root endophytes, and decomposers of plant material. Evolution of trophic modes, morphology, and analysis of genome-scale data are discussed.


Current Biology | 2013

Shared Signatures of Parasitism and Phylogenomics Unite Cryptomycota and Microsporidia

Timothy Y. James; Adrian Pelin; Linda Bonen; Steven Ahrendt; Divya Sain; Nicolas Corradi; Jason E. Stajich

Fungi grow within their food, externally digesting it and absorbing nutrients across a semirigid chitinous cell wall. Members of the new phylum Cryptomycota were proposed to represent intermediate fungal forms, lacking a chitinous cell wall during feeding and known almost exclusively from ubiquitous environmental ribosomal RNA sequences that cluster at the base of the fungal tree [1, 2]. Here, we sequence the first Cryptomycotan genome (the water mold endoparasite Rozella allomycis) and unite the Cryptomycota with another group of endoparasites, the microsporidia, based on phylogenomics and shared genomic traits. We propose that Cryptomycota and microsporidia share a common endoparasitic ancestor, with the clade unified by a chitinous cell wall used to develop turgor pressure in the infection process [3, 4]. Shared genomic elements include a nucleotide transporter that is used by microsporidia for stealing energy in the form of ATP from their hosts [5]. Rozella harbors a mitochondrion that contains a very rapidly evolving genome and lacks complex I of the respiratory chain. These degenerate features are offset by the presence of nuclear genes for alternative respiratory pathways. The Rozella proteome has not undergone major contraction like microsporidia; instead, several classes have undergone expansion, such as host-effector, signal-transduction, and folding proteins.


New Phytologist | 2008

Genetic diversity and host plant preferences revealed by simple sequence repeat and mitochondrial markers in a population of the arbuscular mycorrhizal fungus Glomus intraradices

Daniel Croll; Lukas Wille; Hannes A. Gamper; Natarajan Mathimaran; Peter J. Lammers; Nicolas Corradi; Ian R. Sanders

Arbuscular mycorrhizal fungi (AMF) are important symbionts of plants that improve plant nutrient acquisition and promote plant diversity. Although within-species genetic differences among AMF have been shown to differentially affect plant growth, very little is actually known about the degree of genetic diversity in AMF populations. This is largely because of difficulties in isolation and cultivation of the fungi in a clean system allowing reliable genotyping to be performed. A population of the arbuscular mycorrhizal fungus Glomus intraradices growing in an in vitro cultivation system was studied using newly developed simple sequence repeat (SSR), nuclear gene intron and mitochondrial ribosomal gene intron markers. The markers revealed a strong differentiation at the nuclear and mitochondrial level among isolates. Genotypes were nonrandomly distributed among four plots showing genetic subdivisions in the field. Meanwhile, identical genotypes were found in geographically distant locations. AMF genotypes showed significant preferences to different host plant species (Glycine max, Helianthus annuus and Allium porrum) used before the fungal in vitro culture establishment. Host plants in a field could provide a heterogeneous environment favouring certain genotypes. Such preferences may partly explain within-population patterns of genetic diversity.


PLOS Pathogens | 2009

Genomic survey of the non-cultivatable opportunistic human pathogen, enterocytozoon bieneusi

Hilary G. Morrison; Shi Lei; Xiaochuan Feng; Quanshun Zhang; Nicolas Corradi; Harriet Mayanja; James K Tumwine; Patrick J. Keeling; Louis M. Weiss; Saul Tzipori

Enterocytozoon bieneusi is the most common microsporidian associated with human disease, particularly in the immunocompromised population. In the setting of HIV infection, it is associated with diarrhea and wasting syndrome. Like all microsporidia, E. bieneusi is an obligate, intracellular parasite, but unlike others, it is in direct contact with the host cell cytoplasm. Studies of E. bieneusi have been greatly limited due to the absence of genomic data and lack of a robust cultivation system. Here, we present the first large-scale genomic dataset for E. bieneusi. Approximately 3.86 Mb of unique sequence was generated by paired end Sanger sequencing, representing about 64% of the estimated 6 Mb genome. A total of 3,804 genes were identified in E. bieneusi, of which 1,702 encode proteins with assigned functions. Of these, 653 are homologs of Encephalitozoon cuniculi proteins. Only one E. bieneusi protein with assigned function had no E. cuniculi homolog. The shared proteins were, in general, evenly distributed among the functional categories, with the exception of a dearth of genes encoding proteins associated with pathways for fatty acid and core carbon metabolism. Short intergenic regions, high gene density, and shortened protein-coding sequences were observed in the E. bieneusi genome, all traits consistent with genomic compaction. Our findings suggest that E. bieneusi is a likely model for extreme genome reduction and host dependence.


Genome Biology and Evolution | 2010

The Reduced Genome of the Parasitic Microsporidian Enterocytozoon bieneusi Lacks Genes for Core Carbon Metabolism

Patrick J. Keeling; Nicolas Corradi; Hilary G. Morrison; Karen Luisa Haag; Dieter Ebert; Louis M. Weiss; Saul Tzipori

Reduction of various biological processes is a hallmark of the parasitic lifestyle. Generally, the more intimate the association between parasites and hosts the stronger the parasite relies on its hosts physiology for survival and reproduction. However, some systems have been held to be indispensable, for example, the core pathways of carbon metabolism that produce energy from sugars. Even the most hardened anaerobes that lack oxidative phosphorylation and the tricarboxylic acid cycle have retained glycolysis and some downstream means to generate ATP. Here we describe the deep-coverage genome resequencing of the pathogenic microsporidiian, Enterocytozoon bieneusi, which shows that this parasite has crossed this line and abandoned complete pathways for the most basic carbon metabolism. Comparing two genome sequence surveys of E. bieneusi to genomic data from four other microsporidia reveals a normal complement of 353 genes representing 30 functional pathways in E. bieneusi, except that only 2 out of 21 genes collectively involved in glycolysis, pentose phosphate, and trehalose metabolism are present. Similarly, no genes encoding proteins involved in the processing of spliceosomal introns were found. Altogether, E. bieneusi appears to have no fully functional pathway to generate ATP from glucose. Therefore, this intracellular parasite relies on transporters to import ATP from its host.


Applied and Environmental Microbiology | 2007

Gene copy number polymorphisms in an arbuscular mycorrhizal fungal population.

Nicolas Corradi; Daniel Croll; Alexandre Colard; Gerrit Kuhn; Martine Ehinger; Ian R. Sanders

ABSTRACT Gene copy number polymorphism was studied in a population of the arbuscular mycorrhizal fungus Glomus intraradices by using a quantitative PCR approach on four different genomic regions. Variation in gene copy number was found for a pseudogene and for three ribosomal genes, providing conclusive evidence for a widespread occurrence of macromutational events in the population.


Genome Biology and Evolution | 2011

Conserved Meiotic Machinery in Glomus spp., a Putatively Ancient Asexual Fungal Lineage

Sébastien Halary; Shehre-Banoo Malik; Levannia Lildhar; Claudio H. Slamovits; Mohamed Hijri; Nicolas Corradi

Arbuscular mycorrhizal fungi (AMF) represent an ecologically important and evolutionarily intriguing group of symbionts of land plants, currently thought to have propagated clonally for over 500 Myr. AMF produce multinucleate spores and may exchange nuclei through anastomosis, but meiosis has never been observed in this group. A provocative alternative for their successful and long asexual evolutionary history is that these organisms may have cryptic sex, allowing them to recombine alleles and compensate for deleterious mutations. This is partly supported by reports of recombination among some of their natural populations. We explored this hypothesis by searching for some of the primary tools for a sustainable sexual cycle—the genes whose products are required for proper completion of meiotic recombination in yeast—in the genomes of four AMF and compared them with homologs of representative ascomycete, basidiomycete, chytridiomycete, and zygomycete fungi. Our investigation used molecular and bioinformatic tools to identify homologs of 51 meiotic genes, including seven meiosis-specific genes and other “core meiotic genes” conserved in the genomes of the AMF Glomus diaphanum (MUCL 43196), Glomus irregulare (DAOM-197198), Glomus clarum (DAOM 234281), and Glomus cerebriforme (DAOM 227022). Homology of AMF meiosis-specific genes was verified by phylogenetic analyses with representative fungi, animals (Mus, Hydra), and a choanoflagellate (Monosiga). Together, these results indicate that these supposedly ancient asexual fungi may be capable of undergoing a conventional meiosis; a hypothesis that is consistent with previous reports of recombination within and across some of their populations.


Genome Biology | 2009

Draft genome sequence of the Daphnia pathogen Octosporea bayeri: insights into the gene content of a large microsporidian genome and a model for host-parasite interactions

Nicolas Corradi; Karen Luisa Haag; Jean-François Pombert; Dieter Ebert; Patrick J. Keeling

BackgroundThe highly compacted 2.9-Mb genome of Encephalitozoon cuniculi placed the microsporidia in the spotlight, encoding a mere 2,000 proteins and a highly reduced suite of biochemical pathways. This extreme level of reduction is not universal across the microsporidia, with genomes known to vary up to sixfold in size, suggesting that some genomes may harbor a gene content that is not as reduced as that of Enc. cuniculi. In this study, we present an in-depth survey of the large genome of Octosporea bayeri, a pathogen of Daphnia magna, with an estimated genome size of 24 Mb, in order to shed light on the organization and content of a large microsporidian genome.ResultsUsing Illumina sequencing, 898 Mb of O. bayeri genome sequence was generated, resulting in 13.3 Mb of unique sequence. We annotated a total of 2,174 genes, of which 893 encodes proteins with assigned function. The gene density of the O. bayeri genome is very low on average, but also highly uneven, so gene-dense regions also occur. The data presented here suggest that the O. bayeri proteome is well represented in this analysis and is more complex that that of Enc. cuniculi. Functional annotation of O. bayeri proteins suggests that this species might be less biochemically dependent on its host for its metabolism than its more reduced relatives.ConclusionsThe combination of the data presented here, together with the imminent annotated genome of Daphnia magna, will provide a wealth of genetic and genomic tools to study host-parasite interactions in an interesting model for pathogenesis.

Collaboration


Dive into the Nicolas Corradi's collaboration.

Top Co-Authors

Avatar

Patrick J. Keeling

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Louis M. Weiss

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mohamed Hijri

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar

Rohan Riley

Canadian Institute for Advanced Research

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge