Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nicolas Demaurex is active.

Publication


Featured researches published by Nicolas Demaurex.


Journal of Immunology | 2002

The Dendritic Cell-Specific Adhesion Receptor DC-SIGN Internalizes Antigen for Presentation to T Cells

Anneke Engering; Teunis B. H. Geijtenbeek; Sandra J. van Vliet; Mietske Wijers; Nicolas Demaurex; Antonio Lanzavecchia; Jack A. M. Fransen; Carl G. Figdor; Vincent Piguet; Yvette van Kooyk

Dendritic cells (DCs) capture Ags or viruses in peripheral tissue to transport them to lymphoid organs to induce cellular T cell responses. Recently, a DC-specific C-type lectin was identified, DC-specific ICAM-grabbing non-integrin (DC-SIGN), that functions as cell adhesion receptor mediating both DC migration and T cell activation. DC-SIGN also functions as an HIV-1R that captures HIVgp120 and facilitates DC-induced HIV transmission of T cells. Internalization motifs in the cytoplasmic tail of DC-SIGN hint to a function of DC-SIGN as endocytic receptor. In this study we demonstrate that on DCs DC-SIGN is rapidly internalized upon binding of soluble ligand. Mutating a putative internalization motif in the cytoplasmic tail reduces ligand-induced internalization. Detailed analysis using ratio fluorescence imaging and electron microscopy showed that DC-SIGN-ligand complexes are targeted to late endosomes/lysosomes. Moreover, ligands internalized by DC-SIGN are efficiently processed and presented to CD4+ T cells. The distinct pattern of expression of C-type lectins on DCs in situ and their nonoverlapping Ag recognition profile hint to selective functions of these receptors to allow a DC to recognize a wide variety of Ags and to process these to induce T cell activation. These data point to a novel function of the adhesion receptor DC-SIGN as an efficient DC-specific Ag receptor that can be used as a target to induce viral and antitumor immunity.


Nature Cell Biology | 2000

HIV-1 Nef protein binds to the cellular protein PACS-1 to downregulate class I major histocompatibility complexes

Vincent Piguet; Lei Wan; Christelle Borel; Aram Mangasarian; Nicolas Demaurex; Gary Thomas; Didier Trono

Major-histocompatibility-complex (MHC) proteins are used to display, on the surface of a cell, peptides derived from foreign material — such as a virus — that is infecting that cell. Cytotoxic T lymphocytes then recognize and kill the infected cell. The HIV-1 Nef protein downregulates the cell-surface expression of class I MHC proteins, and probably thereby promotes immune evasion by HIV-1. In the presence of Nef, class I MHC molecules are relocalized from the cell surface to the trans-Golgi network (TGN) through as-yet-unknown mechanisms. Here we show that Nef-induced downregulation of MHC-I expression and MHC-I targeting to the TGN require the binding of Nef to PACS-1, a molecule that controls the TGN localization of the cellular protein furin. This interaction is dependent on Nef’s cluster of acidic amino acids. A chimaeric integral membrane protein containing Nef as its cytoplasmic domain localizes to the TGN after internalization, in an acidic-cluster- and PACS-1-dependent manner. These results support a model in which Nef relocalizes MHC-I by acting as a connector between MHC-I’s cytoplasmic tail and the PACS-1-dependent protein-sorting pathway.


Cell | 1999

Nef-Induced CD4 Degradation: A Diacidic-Based Motif in Nef Functions as a Lysosomal Targeting Signal through the Binding of β-COP in Endosomes

Vincent Piguet; Feng Gu; Michelangelo Foti; Nicolas Demaurex; Jean Gruenberg; Jean-Louis Carpentier; Didier Trono

The Nef protein of primate lentiviruses downregulates the cell surface expression of CD4 through a two-step process. First, Nef connects the cytoplasmic tail of CD4 with adaptor protein complexes (AP), thereby inducing the formation of CD4-specific clathrin-coated pits that rapidly endocytose the viral receptor. Second, Nef targets internalized CD4 molecules for degradation. Here we show that Nef accomplishes this second task by acting as a connector between CD4 and the beta subunit of COPI coatomers in endosomes. A sequence encompassing a critical acidic dipeptide, located nearby but distinct from the AP-binding determinant of HIV-1 Nef, is responsible for beta-COP recruitment and for routing to lysosomes. A novel class of endosomal sorting motif, based on acidic residues, is thus revealed, and beta-COP is identified as its downstream partner.


Nature Cell Biology | 2005

Endosome-to-cytosol transport of viral nucleocapsids

Isabelle Le Blanc; Pierre-Philippe Luyet; Véronique Pons; Charles Ferguson; Neil Emans; Anne Petiot; Nathalie Mayran; Nicolas Demaurex; Julien Fauré; Rémy Sadoul; Robert G. Parton; Jean Gruenberg

During viral infection, fusion of the viral envelope with endosomal membranes and nucleocapsid release were thought to be concomitant events. We show here that for the vesicular stomatitis virus they occur sequentially, at two successive steps of the endocytic pathway. Fusion already occurs in transport intermediates between early and late endosomes, presumably releasing the nucleocapsid within the lumen of intra-endosomal vesicles, where it remains hidden. Transport to late endosomes is then required for the nucleocapsid to be delivered to the cytoplasm. This last step, which initiates infection, depends on the late endosomal lipid lysobisphosphatidic acid (LBPA) and its putative effector Alix/AIP1, and is regulated by phosphatidylinositol-3-phosphate (PtdIns(3)P) signalling via the PtdIns(3)P-binding protein Snx16. We conclude that the nucleocapsid is exported into the cytoplasm after the back-fusion of internal vesicles with the limiting membrane of late endosomes, and that this process is controlled by the phospholipids LBPA and PtdIns(3)P and their effectors.


Journal of Cell Biology | 2001

Functional specialization of calreticulin domains

Kimitoshi Nakamura; Anna Zuppini; Serge Arnaudeau; Jeffery Lynch; Irfan Ahsan; Ryoko Krause; Sylvia Papp; Humbert De Smedt; Jan B. Parys; Werner Müller-Esterl; Daniel Pablo Lew; Karl-Heinz Krause; Nicolas Demaurex; Michal Opas; Marek Michalak

Calreticulin is a Ca2+-binding chaperone in the endoplasmic reticulum (ER), and calreticulin gene knockout is embryonic lethal. Here, we used calreticulin-deficient mouse embryonic fibroblasts to examine the function of calreticulin as a regulator of Ca2+ homeostasis. In cells without calreticulin, the ER has a lower capacity for Ca2+ storage, although the free ER luminal Ca2+ concentration is unchanged. Calreticulin-deficient cells show inhibited Ca2+ release in response to bradykinin, yet they release Ca2+ upon direct activation with the inositol 1,4,5-trisphosphate (InsP3). These cells fail to produce a measurable level of InsP3 upon stimulation with bradykinin, likely because the binding of bradykinin to its cell surface receptor is impaired. Bradykinin binding and bradykinin-induced Ca2+ release are both restored by expression of full-length calreticulin and the N + P domain of the protein. Expression of the P + C domain of calreticulin does not affect bradykinin-induced Ca2+ release but restores the ER Ca2+ storage capacity. Our results indicate that calreticulin may play a role in folding of the bradykinin receptor, which affects its ability to initiate InsP3-dependent Ca2+ release in calreticulin-deficient cells. We concluded that the C domain of calreticulin plays a role in Ca2+ storage and that the N domain may participate in its chaperone functions.


Traffic | 2005

HIV-1 trafficking to the dendritic cell-T-cell infectious synapse uses a pathway of tetraspanin sorting to the immunological synapse

Eduardo Garcia; Marjorie Pion; Annegret Pelchen-Matthews; Lucy M. Collinson; Jean-François Arrighi; Guillaume Blot; Florence Leuba; Jean-Michel Escola; Nicolas Demaurex; Mark Marsh; Vincent Piguet

Dendritic cells (DCs) are essential components of the early events of HIV infection. Here, we characterized the trafficking pathways that HIV‐1 follows during its capture by DCs and its subsequent presentation to CD4+ T cells via an infectious synapse. Immunofluorescence microscopy indicates that the virus‐containing compartment in mature DCs (mDCs) co‐labels for the tetraspanins CD81, CD82, and CD9 but contains little CD63 or LAMP‐1. Using ratio imaging of pH‐reporting fluorescent virions in live DCs, we show that HIV‐1 is internalized in an intracellular endocytic compartment with a pH of 6.2. Significantly, we demonstrate that the infectivity of cell‐free virus is more stable at mildly acidic pH than at neutral pH. Using electron microscopy, we confirm that HIV‐1 accumulates in intracellular vacuoles that contain CD81 positive internal membranes but overlaps only partially with CD63. When allowed to contact T cells, HIV‐1‐loaded DCs redistribute CD81, and CD9, as well as internalized HIV‐1, but not the immunological synapse markers MHC‐II and T‐cell receptor to the infectious synapse. Together, our results indicate that HIV‐1 is internalized into a non‐conventional, non‐lysosomal, endocytic compartment in mDCs and further suggest that HIV‐1 is able to selectively subvert components of the intracellular trafficking machinery required for formation of the DC–T‐cell immunological synapse to facilitate its own cell‐to‐cell transfer and propagation.


Nature | 1998

Electron currents generated by the human phagocyte NADPH oxidase

Jacques Schrenzel; Lena Serrander; Botond Banfi; Olivier Nusse; R. Fouyouzi; Daniel Pablo Lew; Nicolas Demaurex; Karl-Heinz Krause

Electron transport across biological membranes is a well-known feature of bacteria, mitochondria and chloroplasts, where it provides motive forces for vectorial transport processes. In contrast, electron transport is generally not found in the plasma membrane of eukaryotic cells, possibly because it would interfere with electric processes at the plasma membrane. An exception is provided by the phagocyte NADPH oxidase, which generates superoxide () through electron transfer from cytosolic NADPH to extracellular oxygen. The enzyme is essential for host defence, and patients with chronic granulomatous disease, who lack the functional enzyme, suffer from severe infections,. It has been suggested that electron transfer by the NADPH oxidase might be electrogenic. Here we demonstrate, using the whole-cell patch-clamp technique, the generation of electron currents by the NADPH oxidase in human eosinophil granulocytes. The currents were absent in granulocytes of sufferers of chronic granulomatous disease and under conditions of low oxygen. Generation of electron currents across the plasma membrane of eukaryotic cells has not been observed previously and might be — independently of the generation of superoxide — a physiologically relevant function of the phagocyte NADPH oxidase.


Biochimica et Biophysica Acta | 2010

Calcium uptake mechanisms of mitochondria

Jaime Santo-Domingo; Nicolas Demaurex

The ability of mitochondria to capture Ca2+ ions has important functional implications for cells, because mitochondria shape cellular Ca2+ signals by acting as a Ca2+ buffer and respond to Ca2+ elevations either by increasing the cell energy supply or by triggering the cell death program of apoptosis. A mitochondrial Ca2+ channel known as the uniporter drives the rapid and massive entry of Ca2+ ions into mitochondria. The uniporter operates at high, micromolar cytosolic Ca2+ concentrations that are only reached transiently in cells, near Ca2+ release channels. Mitochondria can also take up Ca2+ at low, nanomolar concentrations, but this high affinity mode of Ca2+ uptake is not well characterized. Recently, leucine-zipper-EF hand-containing transmembrane region (Letm1) was proposed to be an electrogenic 1:1 mitochondrial Ca2+/H+ antiporter that drives the uptake of Ca2+ into mitochondria at nanomolar cytosolic Ca2+ concentrations. In this article, we will review the properties of the Ca2+ import systems of mitochondria and discuss how Ca2+ uptake via an electrogenic 1:1 Ca2+/H+ antiport challenges our current thinking of the mitochondrial Ca2+ uptake mechanism.


Journal of Biological Chemistry | 2004

Ca2+ Homeostasis during Mitochondrial Fragmentation and Perinuclear Clustering Induced by hFis1

Maud Frieden; Dominic James; Cyril Castelbou; Anne Danckaert; Jean-Claude Martinou; Nicolas Demaurex

Mitochondria modulate Ca2+ signals by taking up, buffering, and releasing Ca2+ at key locations near Ca2+ release or influx channels. The role of such local interactions between channels and organelles is difficult to establish in living cells because mitochondria form an interconnected network constantly remodeled by coordinated fusion and fission reactions. To study the effect of a controlled disruption of the mitochondrial network on Ca2+ homeostasis, we took advantage of hFis1, a protein that promotes mitochondrial fission by recruiting the dynamin-related protein, Drp1. hFis1 expression in HeLa cells induced a rapid and complete fragmentation of mitochondria, which redistributed away from the plasma membrane and clustered around the nucleus. Despite the dramatic morphological alteration, hFis1-fragmented mitochondria maintained a normal transmembrane potential and pH and took up normally the Ca2+ released from intracellular stores upon agonist stimulation, as measured with a targeted ratiometric pericam probe. In contrast, hFis1-fragmented mitochondria took up more slowly the Ca2+ entering across plasma membrane channels, because the Ca2+ ions reaching mitochondria propagated faster and in a more coordinated manner in interconnected than in fragmented mitochondria. In parallel cytosolic fura-2 measurements, the capacitative Ca2+ entry (CCE) elicited by store depletion was only marginally reduced by hFis1 expression. Regardless of mitochondria shape and location, disruption of mitochondrial potential with uncouplers or oligomycin/rotenone reduced CCE by ∼35%. These observations indicate that close contact to Ca2+ influx channels is not required for CCE modulation and that the formation of a mitochondrial network facilitates Ca2+ propagation within interconnected mitochondria.


Journal of Biological Chemistry | 2003

Sustained Ca2+ Transfer across Mitochondria Is Essential for Mitochondrial Ca2+ Buffering, Store-operated Ca2+ Entry, and Ca2+ Store Refilling

Roland Malli; Maud Frieden; Karin Osibow; Cristina Zoratti; Mirza Mayer; Nicolas Demaurex; Wolfgang F. Graier

Mitochondria have been found to sequester and release Ca2+ during cell stimulation with inositol 1,4,5-triphosphate-generating agonists, thereby generating subplasmalemmal microdomains of low Ca2+ that sustain activity of capacitative Ca2+ entry (CCE). Procedures that prevent mitochondrial Ca2+ uptake inhibit local Ca2+ buffering and CCE, but it is not clear whether Ca2+ has to transit through or remains trapped in the mitochondria. Thus, we analyzed the contribution of mitochondrial Ca2+ efflux on the ability of mitochondria to buffer subplasmalemmal Ca2+, to maintain CCE, and to facilitate endoplasmic reticulum (ER) refilling in endothelial cells. Upon the addition of histamine, the initial mitochondrial Ca2+ transient, monitored with ratio-metric-pericam-mitochondria, was largely independent of extracellular Ca2+. However, subsequent removal of extracellular Ca2+ produced a reversible decrease in [Ca2+]mito, indicating that Ca2+ was continuously taken up and released by mitochondria, although [Ca2+]mito had returned to basal levels. Accordingly, inhibition of the mitochondrial Na+/Ca2+ exchanger with CGP 37157 increased [Ca2+]mito and abolished the ability of mitochondria to buffer subplasmalemmal Ca2+, resulting in an increased activity of BKCa channels and a decrease in CCE. Hence, CGP 37157 also reversibly inhibited ER refilling during cell stimulation. These effects of CGP 37157 were mimicked if mitochondrial Ca2+ uptake was prevented with oligomycin/antimycin A. Thus, during cell stimulation a continuous Ca2+ flux through mitochondria underlies the ability of mitochondria to generate subplasmalemmal microdomains of low Ca2+, to facilitate CCE, and to relay Ca2+ from the plasma membrane to the ER.

Collaboration


Dive into the Nicolas Demaurex's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Damon Poburko

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sergio Grinstein

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge