Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nicolas Newell is active.

Publication


Featured researches published by Nicolas Newell.


Journal of The Mechanical Behavior of Biomedical Materials | 2015

Strain-rate sensitivity of the lateral collateral ligament of the knee.

Timothy J. Bonner; Nicolas Newell; Angelo Karunaratne; Andy D. Pullen; Andrew A. Amis; Anthony M. J. Bull; Spyros D. Masouros

The material properties of ligaments are not well characterized at rates of deformation that occur during high-speed injuries. The aim of this study was to measure the material properties of lateral collateral ligament of the porcine stifle joint in a uniaxial tension model through strain rates in the range from 0.01 to 100/s. Failure strain, tensile modulus and failure stress were calculated. Across the range of strain rates, tensile modulus increased from 288 to 905 MPa and failure stress increased from 39.9 to 77.3 MPa. The strain-rate sensitivity of the material properties decreased as deformation rates increased, and reached a limit at approximately 1/s, beyond which there was no further significant change. In addition, time resolved microfocus small angle X-ray scattering was used to measure the effective fibril modulus (stress/fibril strain) and fibril to tissue strain ratio. The nanoscale data suggest that the contribution of the collagen fibrils towards the observed tissue-level deformation of ligaments diminishes as the loading rate increases. These findings help to predict the patterns of limb injuries that occur at different speeds and improve computational models used to assess and develop mitigation technology.


Annals of Biomedical Engineering | 2013

DESIGN OF A TRAUMATIC INJURY SIMULATOR FOR ASSESSING LOWER LIMB RESPONSE TO HIGH LOADING RATES

Spyros D. Masouros; Nicolas Newell; Arul Ramasamy; Timothy J. Bonner; Andrew T. H. West; Adam M. Hill; Jon C. Clasper; Anthony M. J. Bull

Current military conflicts are characterized by the use of the improvised explosive device. Improvements in personal protection, medical care, and evacuation logistics have resulted in increasing numbers of casualties surviving with complex musculoskeletal injuries, often leading to life-long disability. Thus, there exists an urgent requirement to investigate the mechanism of extremity injury caused by these devices in order to develop mitigation strategies. In addition, the wounds of war are no longer restricted to the battlefield; similar injuries can be witnessed in civilian centers following a terrorist attack. Key to understanding such mechanisms of injury is the ability to deconstruct the complexities of an explosive event into a controlled, laboratory-based environment. In this article, a traumatic injury simulator, designed to recreate in the laboratory the impulse that is transferred to the lower extremity from an anti-vehicle explosion, is presented and characterized experimentally and numerically. Tests with instrumented cadaveric limbs were then conducted to assess the simulator’s ability to interact with the human in two mounting conditions, simulating typical seated and standing vehicle passengers. This experimental device will now allow us to (a) gain comprehensive understanding of the load-transfer mechanisms through the lower limb, (b) characterize the dissipating capacity of mitigation technologies, and (c) assess the bio-fidelity of surrogates.


Journal of Biomechanics | 2016

A validated numerical model of a lower limb surrogate to investigate injuries caused by under-vehicle explosions

Nicolas Newell; Rob Salzar; Anthony M. J. Bull; Spyros D. Masouros

Under-vehicle explosions often result in injury of occupants׳ lower extremities. The majority of these injuries are associated with poor outcomes. The protective ability of vehicles against explosions is assessed with Anthropometric Test Devices (ATDs) such as the MIL-Lx, which is designed to behave in a similar way to the human lower extremity when subjected to axial loading. It incorporates tibia load cells, the response of which can provide an indication of the risk of injury to the lower extremity through the use of injury risk curves developed from cadaveric experiments. In this study an axisymmetric finite element model of the MIL-Lx with a combat boot was developed and validated. Model geometry was obtained from measurements taken using digital callipers and rulers from the MIL-Lx, and using CT images for the combat boot. Appropriate experimental methods were used to obtain material properties. These included dynamic, uniaxial compression tests, quasi-static stress-relaxation tests and 3 point bending tests. The model was validated by comparing force-time response measured at the tibia load cells and the amount of compliant element compression obtained experimentally and computationally using two blast-injury experimental rigs. Good correlations between the numerical and experimental results were obtained with both. This model can now be used as a virtual test-bed of mitigation designs and in surrogate device development.


Injury Prevention | 2012

The comparative behaviour of two combat boots under impact.

Nicolas Newell; Spyros D. Masouros; Andy D. Pullen; Anthony M. J. Bull

Background Improvised explosive devices have become the characteristic weapon of conflicts in Iraq and Afghanistan. While little can be done to mitigate against the effects of blast in free-field explosions, scaled blast simulations have shown that the combat boot can attenuate the effects on the vehicle occupants of anti-vehicular mine blasts. Although the combat boot offers some protection to the lower limb, its behaviour at the energies seen in anti-vehicular mine blast has not been documented previously. Methods The sole of eight same-size combat boots from two brands currently used by UK troops deployed to Iraq and Afghanistan were impacted at energies of up to 518 J, using a spring-assisted drop rig. Results The results showed that the Meindl Desert Fox combat boot consistently experienced a lower peak force at lower impact energies and a longer time-to-peak force at higher impact energies when compared with the Lowa Desert Fox combat boot. Discussion This reduction in the peak force and extended rise time, resulting in a lower energy transfer rate, is a potentially positive mitigating effect in terms of the trauma experienced by the lower limb. Conclusion Currently, combat boots are tested under impact at the energies seen during heel strike in running. Through the identification of significantly different behaviours at high loading, this study has shown that there is rationale in adding the performance of combat boots under impact at energies above those set out in international standards to the list of criteria for the selection of a combat boot.


Journal of The Mechanical Behavior of Biomedical Materials | 2017

Material properties of the heel fat pad across strain rates

Grigoris Grigoriadis; Nicolas Newell; Diagarajen Carpanen; Alexandros Christou; Anthony M. J. Bull; Spyros D. Masouros

The complex structural and material behaviour of the human heel fat pad determines the transmission of plantar loading to the lower limb across a wide range of loading scenarios; from locomotion to injurious incidents. The aim of this study was to quantify the hyper-viscoelastic material properties of the human heel fat pad across strains and strain rates. An inverse finite element (FE) optimisation algorithm was developed and used, in conjunction with quasi-static and dynamic tests performed to five cadaveric heel specimens, to derive specimen-specific and mean hyper-viscoelastic material models able to predict accurately the response of the tissue at compressive loading of strain rates up to 150 s−1. The mean behaviour was expressed by the quasi-linear viscoelastic (QLV) material formulation, combining the Yeoh material model (C10=0.1MPa, C30=7MPa, K=2GPa) and Prony׳s terms (A1=0.06, A2=0.77, A3=0.02 for τ1=1ms, τ2=10ms, τ3=10s). These new data help to understand better the functional anatomy and pathophysiology of the foot and ankle, develop biomimetic materials for tissue reconstruction, design of shoe, insole, and foot and ankle orthoses, and improve the predictive ability of computational models of the foot and ankle used to simulate daily activities or predict injuries at high rate injurious incidents such as road traffic accidents and underbody blast.


SHOCK COMPRESSION OF CONDENSED MATTER - 2011: Proceedings of the Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter | 2012

PROSPECTS FOR STUDYING HOW HIGH-INTENSITY COMPRESSION WAVES CAUSE DAMAGE IN HUMAN BLAST INJURIES

Katherine A. Brown; Chiara Bo; Spyros D. Masouros; Arul Ramasamy; Nicolas Newell; Timothy J. Bonner; Jens Balzer; Adam M. Hill; Jon C. Clasper; Anthony M. J. Bull; William Proud

Since World War I, explosions have accounted for over 70% of all injuries in conflict. With the development of improved personnel protection of the torso, improved medical care and faster aeromedical evacuation, casualties are surviving with more severe injuries to the extremities. Understanding the processes involved in the transfer of blast-induced shock waves through biological tissues is essential for supporting efforts aimed at mitigating and treating blast injury. Given the inherent heterogeneities in the human body, we argue that studying these processes demands a highly integrated approach requiring expertise in shock physics, biomechanics and fundamental biological processes. This multidisciplinary systems approach enables one to develop the experimental framework for investigating the material properties of human tissues that are subjected to high compression waves in blast conditions and the fundamental cellular processes altered by this type of stimuli. Ultimately, we hope to use the information gained from these studies in translational research aimed at developing improved protection for those at risk and improved clinical outcomes for those who have been injured from a blast wave.


Journal of The Mechanical Behavior of Biomedical Materials | 2017

Material properties of bovine intervertebral discs across strain rates

Nicolas Newell; Grigorios Grigoriadis; Alexandros Christou; Diagarajen Carpanen; Spyros D. Masouros

The intervertebral disc (IVD) is a complex structure responsible for distributing compressive loading to adjacent vertebrae and allowing the vertebral column to bend and twist. To study the mechanical behaviour of individual components of the IVD, it is common for specimens to be dissected away from their surrounding tissues for mechanical testing. However, disrupting the continuity of the IVD to obtain material properties of each component separately may result in erroneous values. In this study, an inverse finite element (FE) modelling optimisation algorithm has been used to obtain material properties of the IVD across strain rates, therefore bypassing the need to harvest individual samples of each component. Uniaxial compression was applied to ten fresh-frozen bovine intervertebral discs at strain rates of 10-3-1/s. The experimental data were fed into the inverse FE optimisation algorithm and each experiment was simulated using the subject specific FE model of the respective specimen. A sensitivity analysis revealed that the IVDs response was most dependent upon the Youngs modulus (YM) of the fibre bundles and therefore this was chosen to be the parameter to optimise. Based on the obtained YM values for each test corresponding to a different strain rate (ε̇), the following relationship was derived:YM=35.5lnε̇+527.5. These properties can be used in finite element models of the IVD that aim to simulate spinal biomechanics across loading rates.


Journal of the Royal Army Medical Corps | 2014

From the battlefield to the laboratory: the use of clinical data analysis in developing models of lower limb blast injury

Arul Ramasamy; Nicolas Newell; Spyros D. Masouros

A key weapon in the insurgents’ armamentarium against coalition and local security forces in Iraq and Afghanistan has been the use of anti-vehicle mines and improvised explosive devices (IEDs). Often directed against vehicle-borne troops, these devices, once detonated, transfer considerable amounts of energy through the vehicle to the occupants. This results in severe lower limb injuries that are frequently limb threatening. Fundamental to designing novel mitigation strategies is a requirement to understand the injury mechanism by developing appropriate injury modelling tools that are underpinned by the analysis of contemporary battlefield casualty data. This article aims to summarise our understanding of the clinical course of lower limb blast injuries from IEDs and its value in developing unique injury modelling test-beds to evaluate and produce the next generation of protective equipment for reducing the devastating effects of blast injury.


Journal of the Royal Army Medical Corps | 2018

Experimental platforms to study blast injury

Thuy-Tien N. Nguyen; Ap Pearce; Diagarajen Carpanen; David Sory; Grigoris Grigoriadis; Nicolas Newell; J C Clasper; Anthony M. J. Bull; William Proud; Spyros D. Masouros

Injuries sustained due to attacks from explosive weapons are multiple in number, complex in nature, and not well characterised. Blast may cause damage to the human body by the direct effect of overpressure, penetration by highly energised fragments, and blunt trauma by violent displacements of the body. The ability to reproduce the injuries of such insults in a well-controlled fashion is essential in order to understand fully the unique mechanism by which they occur, and design better treatment and protection strategies to alleviate the resulting poor long-term outcomes. This paper reports a range of experimental platforms that have been developed for different blast injury models, their working mechanism, and main applications. These platforms include the shock tube, split-Hopkinson bars, the gas gun, drop towers and bespoke underbody blast simulators.


Annals of Biomedical Engineering | 2018

Lower Limb Posture Affects the Mechanism of Injury in Under-Body Blast

Grigoris Grigoriadis; Diagarajen Carpanen; Claire Webster; Arul Ramasamy; Nicolas Newell; Spyros D. Masouros

Over 80% of wounded Service Members sustain at least one extremity injury. The ‘deck-slap’ foot, a product of the vehicle’s floor rising rapidly when attacked by a mine to injure the limb, has been a signature injury in recent conflicts. Given the frequency and severity of these combat-related extremity injuries, they require the greatest utilisation of resources for treatment, and have caused the greatest number of disabled soldiers during recent conflicts. Most research efforts focus on occupants seated with both tibia-to-femur and tibia-to-foot angles set at 90°; it is unknown whether results obtained from these tests are applicable when alternative seated postures are adopted. To investigate this, lower limbs from anthropometric testing devices (ATDs) and post mortem human subjects (PMHSs) were loaded in three different seated postures using an under-body blast injury simulator. Using metrics that are commonly used for assessing injury, such as the axial force and the revised tibia index, the lower limb of ATDs were found to be insensitive to posture variations while the injuries sustained by the PMHS lower limbs differed in type and severity between postures. This suggests that the mechanism of injury depends on the posture and that this cannot be captured by the current injury criteria. Therefore, great care should be taken when interpreting and extrapolating results, especially in vehicle qualification tests, when postures other than the 90°–90° are of interest.

Collaboration


Dive into the Nicolas Newell's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adam M. Hill

Imperial College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge