Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nicolas Yunes is active.

Publication


Featured researches published by Nicolas Yunes.


Physics Reports | 2009

Chern-Simons Modified General Relativity

Stephon Alexander; Nicolas Yunes

Abstract Chern–Simons modified gravity is an effective extension of general relativity that captures leading-order, gravitational parity violation. Such an effective theory is motivated by anomaly cancelation in particle physics and string theory. In this review, we begin by providing a pedagogical derivation of the three distinct ways such an extension arises: (1) in particle physics, (2) from string theory and (3) geometrically. We then review many exact and approximate vacuum solutions of the modified theory, and discuss possible matter couplings. Following this, we review the myriad astrophysical, solar system, gravitational wave and cosmological probes that bound Chern–Simons modified gravity, including discussions of cosmic baryon asymmetry and inflation. The review closes with a discussion of possible future directions in which to test and study gravitational parity violation.


Physical Review D | 2016

Theoretical physics implications of the binary black-hole mergers GW150914 and GW151226

Nicolas Yunes; Kent Yagi; Frans Pretorius

The gravitational wave observations GW150914 and GW151226 by Advanced LIGO provide the first opportunity to learn about physics in the extreme gravity environment of coalescing binary black holes. The LIGO Scientific Collaboration and the Virgo Collaboration have verified that this observation is consistent with Einstein’s theory of general relativity, constraining the presence of certain parametric anomalies in the signal. This paper expands their analysis to a larger class of anomalies, highlighting the inferences that can be drawn on nonstandard theoretical physics mechanisms that could otherwise have affected the observed signals. We find that these gravitational wave events constrain a plethora of mechanisms associated with the generation and propagation of gravitational waves, including the activation of scalar fields, gravitational leakage into large extra dimensions, the variability of Newton’s constant, the speed of gravity, a modified dispersion relation, gravitational Lorentz violation and the strong equivalence principle. Though other observations limit many of these mechanisms already, GW150914 and GW151226 are unique in that they are direct probes of dynamical strong-field gravity and of gravitational wave propagation. We also show that GW150914 constrains inferred properties of exotic compact object alternatives to Kerr black holes. We argue, however, that the true potential for GW150914 to both rule out exotic objects and constrain physics beyond general relativity is severely limited by the lack of understanding of the coalescence regime in almost all relevant modified gravity theories. This event thus significantly raises the bar that these theories have to pass, both in terms of having a sound theoretical underpinning and reaching the minimal level of being able to solve the equations of motion for binary merger events. We conclude with a discussion of the additional inferences that can be drawn if the lower-confidence observation of an electromagnetic counterpart to GW150914 holds true, or such a coincidence is observed with future events; this would provide dramatic constraints on the speed of gravity and gravitational Lorentz violation.


The Astrophysical Journal | 2013

RESONANT POST-NEWTONIAN ECCENTRICITY EXCITATION IN HIERARCHICAL THREE-BODY SYSTEMS

Smadar Naoz; Bence Kocsis; Abraham Loeb; Nicolas Yunes

We study the secular, hierarchical three-body problem to first-order in a post-Newtonian expansion of general relativity (GR). We expand the first-order post-Newtonian Hamiltonian to leading-order in the ratio of the semi-major axis of the two orbits. In addition to the well-known terms that correspond to the GR precession of the inner and outer orbits, we find a new secular post-Newtonian interaction term that can affect the long-term evolution of the triple. We explore the parameter space for highly inclined and eccentric systems, where the Kozai-Lidov mechanism can produce large-amplitude oscillations in the eccentricities. The standard lore, i.e., that GR effects suppress eccentricity, is only consistent with the parts of phase space where the GR timescales are several orders of magnitude shorter than the secular Newtonian one. In other parts of phase space, however, post-Newtonian corrections combined with the three-body ones can excite eccentricities. In particular, for systems where the GR timescale is comparable to the secular Newtonian timescales, the three-body interactions give rise to a resonant-like eccentricity excitation. Furthermore, for triples with a comparable-mass inner binary, where the eccentric Kozai-Lidov mechanism is suppressed, post-Newtonian corrections can further increase the eccentricity and lead to orbital flips even when the timescale of the former is much longer than the timescale of the secular Kozai-Lidov quadrupole perturbations.


Physical Review D | 2013

I-Love-Q Relations in Neutron Stars and their Applications to Astrophysics, Gravitational Waves and Fundamental Physics

Kent Yagi; Nicolas Yunes

The exterior gravitational field of a slowly-rotating neutron star can be characterized by its multipole moments, the first few being the neutron star mass, moment of inertia, and quadrupole moment to quadratic order in spin. In principle, all of these quantities depend on the neutron stars internal structure, and thus, on unknown nuclear physics at supra-nuclear energy densities. We here find relations between the moment of inertia, the Love numbers and the quadrupole moment (I-Love-Q relations) that do not depend sensitively on the neutron stars internal structure. Three important consequences derive from these I-Love-Q relations. On an observational astrophysics front, the measurement of a single member of the I-Love-Q trio would automatically provide information about the other two, even when the latter may not be observationally accessible. On a gravitational wave front, the I-Love-Q relations break the degeneracy between the quadrupole moment and the neutron-star spins in binary inspiral waveforms, allowing second-generation ground-based detectors to determine the (dimensionless) averaged spin to


Living Reviews in Relativity | 2013

Gravitational-Wave Tests of General Relativity with Ground-Based Detectors and Pulsar-Timing Arrays

Nicolas Yunes; X. Siemens

\mathcal{O}(10)%


Science | 2013

I-Love-Q: Unexpected Universal Relations for Neutron Stars and Quark Stars

Kent Yagi; Nicolas Yunes

, given a sufficiently large signal-to-noise ratio detection. On a fundamental physics front, the I-Love-Q relations allow for tests of General Relativity in the neutron-star strong-field that are both theory- and internal structure-independent. As an example, by combining gravitational-wave and electromagnetic observations, one may constrain dynamical Chern-Simons gravity in the future by more than 6 orders of magnitude more stringently than Solar System and table-top constraints.


The Astrophysical Journal | 2012

CIRCUMBINARY MAGNETOHYDRODYNAMIC ACCRETION INTO INSPIRALING BINARY BLACK HOLES

Scott C. Noble; Bruno C. Mundim; Hiroyuki Nakano; Julian H. Krolik; Manuela Campanelli; Yosef Zlochower; Nicolas Yunes

This review is focused on tests of Einstein’s theory of general relativity with gravitational waves that are detectable by ground-based interferometers and pulsar-timing experiments. Einstein’s theory has been greatly constrained in the quasi-linear, quasi-stationary regime, where gravity is weak and velocities are small. Gravitational waves will allow us to probe a complimentary, yet previously unexplored regime: the non-linear and dynamical strong-field regime. Such a regime is, for example, applicable to compact binaries coalescing, where characteristic velocities can reach fifty percent the speed of light and gravitational fields are large and dynamical. This review begins with the theoretical basis and the predicted gravitational-wave observables of modified gravity theories. The review continues with a brief description of the detectors, including both gravitational-wave interferometers and pulsar-timing arrays, leading to a discussion of the data analysis formalism that is applicable for such tests. The review ends with a discussion of gravitational-wave tests for compact binary systems.


Physical Review Letters | 2009

Cross section, final spin and zoom-whirl behavior in high-energy black hole collisions

Ulrich Sperhake; Vitor Cardoso; Frans Pretorius; Emanuele Berti; Tanja Hinderer; Nicolas Yunes

Neutron Star Measurements Neutron stars are one of the densest manifestations of matter in the universe. Yagi and Yunes (p. 365) examined the moment of inertia of neutron stars, which determines how fast they can spin, and the quadrupole moment and tidal Love number, which determine how much they can be deformed. The findings suggest that these three quantities obey universal relationships that are independent of the internal structure of the stars, implying that measurements of one of the three could accurately predict the other two. The relation of inertia, Love number, and quadrupole moment is independent of neutron and quark stars’ internal structure. Neutron stars and quark stars are not only characterized by their mass and radius but also by how fast they spin, through their moment of inertia, and how much they can be deformed, through their Love number and quadrupole moment. These depend sensitively on the star’s internal structure and thus on unknown nuclear physics. We find universal relations between the moment of inertia, the Love number, and the quadrupole moment that are independent of the neutron and quark star’s internal structure. These can be used to learn about neutron star deformability through observations of the moment of inertia, break degeneracies in gravitational wave detection to measure spin in binary inspirals, distinguish neutron stars from quark stars, and test general relativity in a nuclear structure–independent fashion.


Physical Review D | 2009

Fundamental theoretical bias in gravitational wave astrophysics and the parametrized post-Einsteinian framework

Nicolas Yunes; Frans Pretorius

We have simulated the magnetohydrodynamic evolution of a circumbinary disk surrounding an equal-mass binary comprising two non-spinning black holes during the period in which the disk inflow time is comparable to the binary evolution time due to gravitational radiation. Both the changing spacetime and the binary orbital evolution are described by an innovative technique utilizing high-order post-Newtonian approximations. Prior to the beginning of the inspiral, the structure of the circumbinary disk is predicted well by extrapolation from Newtonian results: a gap of roughly two binary separation radii is cleared, and matter piles up at the outer edge of this gap as inflow is retarded by torques exerted by the binary; the accretion rate is roughly half its value at large radius. During inspiral, the inner edge of the disk initially moves inward in coordination with the shrinking binary, but—as the orbital evolution accelerates—the inward motion of the disk edge falls behind the rate of binary compression. In this stage, the binary torque falls substantially, but the accretion rate decreases by only 10%-20%. When the binary separation is tens of gravitational radii, the rest-mass efficiency of disk radiation is a few percent, suggesting that supermassive binary black holes could be very luminous at this stage of their evolution. Inner disk heating is modulated at a beat frequency comparable to the binary orbital frequency. However, a disk with sufficient surface density to be luminous may be optically thick, suppressing periodic modulation of the luminosity.


Classical and Quantum Gravity | 2012

NR/HEP: roadmap for the future

Vitor Cardoso; Leonardo Gualtieri; Carlos Herdeiro; Ulrich Sperhake; Paul M. Chesler; Luis Lehner; S. Park; Harvey S. Reall; Carlos F. Sopuerta; Daniela Alic; Oscar J. C. Dias; Roberto Emparan; Valeria Ferrari; Steven B. Giddings; Mahdi Godazgar; Ruth Gregory; Veronika E. Hubeny; Akihiro Ishibashi; Greg Landsberg; Carlos O. Lousto; David Mateos; Vicki Moeller; Hirotada Okawa; Paolo Pani; M. Andy Parker; Frans Pretorius; Masaru Shibata; Hajime Sotani; Toby Wiseman; Helvi Witek

We study the collision of two highly boosted equal-mass, nonrotating black holes with generic impact parameter. We find such systems to exhibit zoom-whirl behavior when fine-tuning the impact parameter. Near the threshold of immediate merger the remnant black-hole Kerr parameter can be near maximal (a/M greater, similar 0.95) and the radiated energy can be as large as 35 +/- 5% of the center-of-mass energy.

Collaboration


Dive into the Nicolas Yunes's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Leo C. Stein

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Carlos F. Sopuerta

Institut de Ciències de l'Espai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Antoine Klein

University of Mississippi

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Emanuele Berti

University of Mississippi

View shared research outputs
Top Co-Authors

Avatar

Enrico Barausse

Institut d'Astrophysique de Paris

View shared research outputs
Researchain Logo
Decentralizing Knowledge