Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nicole Hagenah is active.

Publication


Featured researches published by Nicole Hagenah.


PLOS ONE | 2013

Regional Contingencies in the Relationship between Aboveground Biomass and Litter in the World's Grasslands

Lydia R. O’Halloran; Elizabeth T. Borer; Eric W. Seabloom; Andrew S. MacDougall; Elsa E. Cleland; Rebecca L. McCulley; Sarah E. Hobbie; W. Stan Harpole; Nicole M. DeCrappeo; Chengjin Chu; Jonathan D. Bakker; Kendi F. Davies; Guozhen Du; Jennifer Firn; Nicole Hagenah; Kirsten S. Hofmockel; Johannes M. H. Knops; Wei Li; Brett A. Melbourne; John W. Morgan; John L. Orrock; Suzanne M. Prober; Carly J. Stevens

Based on regional-scale studies, aboveground production and litter decomposition are thought to positively covary, because they are driven by shared biotic and climatic factors. Until now we have been unable to test whether production and decomposition are generally coupled across climatically dissimilar regions, because we lacked replicated data collected within a single vegetation type across multiple regions, obfuscating the drivers and generality of the association between production and decomposition. Furthermore, our understanding of the relationships between production and decomposition rests heavily on separate meta-analyses of each response, because no studies have simultaneously measured production and the accumulation or decomposition of litter using consistent methods at globally relevant scales. Here, we use a multi-country grassland dataset collected using a standardized protocol to show that live plant biomass (an estimate of aboveground net primary production) and litter disappearance (represented by mass loss of aboveground litter) do not strongly covary. Live biomass and litter disappearance varied at different spatial scales. There was substantial variation in live biomass among continents, sites and plots whereas among continent differences accounted for most of the variation in litter disappearance rates. Although there were strong associations among aboveground biomass, litter disappearance and climatic factors in some regions (e.g. U.S. Great Plains), these relationships were inconsistent within and among the regions represented by this study. These results highlight the importance of replication among regions and continents when characterizing the correlations between ecosystem processes and interpreting their global-scale implications for carbon flux. We must exercise caution in parameterizing litter decomposition and aboveground production in future regional and global carbon models as their relationship is complex.


Nature plants | 2015

Grassland productivity limited by multiple nutrients

Philip A. Fay; Suzanne M. Prober; W. Stanley Harpole; Johannes M. H. Knops; Jonathan D. Bakker; Elizabeth T. Borer; Eric M. Lind; Andrew S. MacDougall; Eric W. Seabloom; Peter D. Wragg; Peter B. Adler; Dana M. Blumenthal; Yvonne M. Buckley; Chengjin Chu; Elsa E. Cleland; Scott L. Collins; Kendi F. Davies; Guozhen Du; Xiaohui Feng; Jennifer Firn; Daniel S. Gruner; Nicole Hagenah; Yann Hautier; Robert W. Heckman; Virginia L. Jin; Kevin P. Kirkman; Julia A. Klein; Laura M. Ladwig; Qi Li; Rebecca L. McCulley

Terrestrial ecosystem productivity is widely accepted to be nutrient limited1. Although nitrogen (N) is deemed a key determinant of aboveground net primary production (ANPP)2,3, the prevalence of co-limitation by N and phosphorus (P) is increasingly recognized4–8. However, the extent to which terrestrial productivity is co-limited by nutrients other than N and P has remained unclear. Here, we report results from a standardized factorial nutrient addition experiment, in which we added N, P and potassium (K) combined with a selection of micronutrients (K+μ), alone or in concert, to 42 grassland sites spanning five continents, and monitored ANPP. Nutrient availability limited productivity at 31 of the 42 grassland sites. And pairwise combinations of N, P, and K+μ co-limited ANPP at 29 of the sites. Nitrogen limitation peaked in cool, high latitude sites. Our findings highlight the importance of less studied nutrients, such as K and micronutrients, for grassland productivity, and point to significant variations in the type and degree of nutrient limitation. We suggest that multiple-nutrient constraints must be considered when assessing the ecosystem-scale consequences of nutrient enrichment.


Ecology Letters | 2011

Abundance of introduced species at home predicts abundance away in herbaceous communities

Jennifer Firn; Joslin L. Moore; Andrew S. MacDougall; Elizabeth T. Borer; Eric W. Seabloom; Janneke HilleRisLambers; W. Stanley Harpole; Elsa E. Cleland; Cynthia S. Brown; Johannes M. H. Knops; Suzanne M. Prober; David A. Pyke; Kelly A. Farrell; John D. Bakker; Lydia R. O’Halloran; Peter B. Adler; Scott L. Collins; Carla M. D’Antonio; Michael J. Crawley; Elizabeth M. Wolkovich; Kimberly J. La Pierre; Brett A. Melbourne; Yann Hautier; John W. Morgan; Andrew D. B. Leakey; Adam D. Kay; Rebecca L. McCulley; Kendi F. Davies; Carly J. Stevens; Chengjin Chu

Many ecosystems worldwide are dominated by introduced plant species, leading to loss of biodiversity and ecosystem function. A common but rarely tested assumption is that these plants are more abundant in introduced vs. native communities, because ecological or evolutionary-based shifts in populations underlie invasion success. Here, data for 26 herbaceous species at 39 sites, within eight countries, revealed that species abundances were similar at native (home) and introduced (away) sites - grass species were generally abundant home and away, while forbs were low in abundance, but more abundant at home. Sites with six or more of these species had similar community abundance hierarchies, suggesting that suites of introduced species are assembling similarly on different continents. Overall, we found that substantial changes to populations are not necessarily a pre-condition for invasion success and that increases in species abundance are unusual. Instead, abundance at home predicts abundance away, a potentially useful additional criterion for biosecurity programmes.


Archive | 2011

Species abundance at home predicts abundance away in grasslands

Jennifer Firn; Joslin L. Moore; Andrew S. MacDougall; Elizabeth T. Borer; Eric W. Seabloom; Janneke HilleRisLambers; W. Stanley Harpole; Elsa E. Cleland; Cindy S. Brown; Johannes M. H. Knops; Suzanne M. Prober; David A. Pyke; Kelly A. Farrell; John D. Bakker; Lydia R. O'Halloran; Peter B. Adler; Scott L. Collins; Carla M. D'Antonio; Michael J. Crawley; Elizabeth M. Wolkovich; Kimberley La Pierre; Brett A. Melbourne; Yann Hautier; John W. Morgan; Andrew D. B. Leakey; Adam D. Kay; Rebecca L. McCulley; Kendi F. Davies; Carly J. Stevens; Chengjin Chu

Many ecosystems worldwide are dominated by introduced plant species, leading to loss of biodiversity and ecosystem function. A common but rarely tested assumption is that these plants are more abundant in introduced vs. native communities, because ecological or evolutionary-based shifts in populations underlie invasion success. Here, data for 26 herbaceous species at 39 sites, within eight countries, revealed that species abundances were similar at native (home) and introduced (away) sites - grass species were generally abundant home and away, while forbs were low in abundance, but more abundant at home. Sites with six or more of these species had similar community abundance hierarchies, suggesting that suites of introduced species are assembling similarly on different continents. Overall, we found that substantial changes to populations are not necessarily a pre-condition for invasion success and that increases in species abundance are unusual. Instead, abundance at home predicts abundance away, a potentially useful additional criterion for biosecurity programmes.


Ecology | 2014

Plant community response to loss of large herbivores differs between North American and South African savanna grasslands

Sally E. Koerner; Deron E. Burkepile; Richard W.S. Fynn; Catherine E. Burns; Stephanie Eby; Navashni Govender; Nicole Hagenah; Katherine J. Matchett; Dave I. Thompson; Kevin R. Wilcox; Scott L. Collins; Kevin P. Kirkman; Alan K. Knapp; Melinda D. Smith

Herbivory and fire shape plant community structure in grass-dominated ecosystems, but these disturbance regimes are being altered around the world. To assess the consequences of such alterations, we excluded large herbivores for seven years from mesic savanna grasslands sites burned at different frequencies in North America (Konza Prairie Biological Station, Kansas, USA) and South Africa (Kruger National Park). We hypothesized that the removal of a single grass-feeding herbivore from Konza would decrease plant community richness and shift community composition due to increased dominance by grasses. Similarly, we expected grass dominance to increase at Kruger when removing large herbivores, but because large herbivores are more diverse, targeting both grasses and forbs, at this study site, the changes due to herbivore removal would be muted. After seven years of large-herbivore exclusion, richness strongly decreased and community composition changed at Konza, whereas little change was evident at Kruger. We found that this divergence in response was largely due to differences in the traits and numbers of dominant grasses between the study sites rather than the predicted differences in herbivore assemblages. Thus, the diversity of large herbivores lost may be less important in determining plant community dynamics than the functional traits of the grasses that dominate mesic, disturbance-maintained savanna grasslands.


Philosophical Transactions of the Royal Society B | 2016

Climate modifies response of non-native and native species richness to nutrient enrichment

Habacuc Flores-Moreno; Peter B. Reich; Eric M. Lind; Lauren L. Sullivan; Eric W. Seabloom; Laura Yahdjian; Andrew S. MacDougall; Lara G. Reichmann; Juan Alberti; Selene Báez; Jonathan D. Bakker; Marc W. Cadotte; Maria C. Caldeira; Enrique J. Chaneton; Carla M. D'Antonio; Philip A. Fay; Jennifer Firn; Nicole Hagenah; W. Stanley Harpole; Oscar Iribarne; Kevin P. Kirkman; Johannes M. H. Knops; Kimberly J. La Pierre; Ramesh Laungani; Andrew D. B. Leakey; Rebecca L. McCulley; Joslin L. Moore; Jesús Pascual; Elizabeth T. Borer

Ecosystem eutrophication often increases domination by non-natives and causes displacement of native taxa. However, variation in environmental conditions may affect the outcome of interactions between native and non-native taxa in environments where nutrient supply is elevated. We examined the interactive effects of eutrophication, climate variability and climate average conditions on the success of native and non-native plant species using experimental nutrient manipulations replicated at 32 grassland sites on four continents. We hypothesized that effects of nutrient addition would be greatest where climate was stable and benign, owing to reduced niche partitioning. We found that the abundance of non-native species increased with nutrient addition independent of climate; however, nutrient addition increased non-native species richness and decreased native species richness, with these effects dampened in warmer or wetter sites. Eutrophication also altered the time scale in which grassland invasion responded to climate, decreasing the importance of long-term climate and increasing that of annual climate. Thus, climatic conditions mediate the responses of native and non-native flora to nutrient enrichment. Our results suggest that the negative effect of nutrient addition on native abundance is decoupled from its effect on richness, and reduces the time scale of the links between climate and compositional change.


Oecologia | 2014

Loss of a large grazer impacts savanna grassland plant communities similarly in North America and South Africa

Stephanie Eby; Deron E. Burkepile; Richard W.S. Fynn; Catherine E. Burns; Navashni Govender; Nicole Hagenah; Sally E. Koerner; Katherine J. Matchett; Dave I. Thompson; Kevin R. Wilcox; Scott L. Collins; Kevin P. Kirkman; Alan K. Knapp; Melinda D. Smith

Abstract Large herbivore grazing is a widespread disturbance in mesic savanna grasslands which increases herbaceous plant community richness and diversity. However, humans are modifying the impacts of grazing on these ecosystems by removing grazers. A more general understanding of how grazer loss will impact these ecosystems is hampered by differences in the diversity of large herbivore assemblages among savanna grasslands, which can affect the way that grazing influences plant communities. To avoid this we used two unique enclosures each containing a single, functionally similar large herbivore species. Specifically, we studied a bison (Bos bison) enclosure at Konza Prairie Biological Station, USA and an African buffalo (Syncerus caffer) enclosure in Kruger National Park, South Africa. Within these enclosures we erected exclosures in annually burned and unburned sites to determine how grazer loss would impact herbaceous plant communities, while controlling for potential fire-grazing interactions. At both sites, removal of the only grazer decreased grass and forb richness, evenness and diversity, over time. However, in Kruger these changes only occurred with burning. At both sites, changes in plant communities were driven by increased dominance with herbivore exclusion. At Konza, this was caused by increased abundance of one grass species, Andropogon gerardii, while at Kruger, three grasses, Themeda triandra, Panicum coloratum, and Digitaria eriantha increased in abundance.


Philosophical Transactions of the Royal Society B | 2016

The influence of balanced and imbalanced resource supply on biodiversity–functioning relationship across ecosystems

Aleksandra M. Lewandowska; Antje Biermann; Elizabeth T. Borer; Miguel A. Cebrián-Piqueras; Steven Declerck; Luc De Meester; Ellen Van Donk; Lars Gamfeldt; Daniel S. Gruner; Nicole Hagenah; W. Stanley Harpole; Kevin P. Kirkman; Christopher A. Klausmeier; Michael Kleyer; Johannes M. H. Knops; Pieter Lemmens; Eric M. Lind; Elena Litchman; Jasmin Mantilla-Contreras; Koen Martens; Sandra Meier; Vanessa Minden; Joslin L. Moore; Harry Olde Venterink; Eric W. Seabloom; Ulrich Sommer; Maren Striebel; Anastasia Trenkamp; Juliane Trinogga; Jotaro Urabe

Numerous studies show that increasing species richness leads to higher ecosystem productivity. This effect is often attributed to more efficient portioning of multiple resources in communities with higher numbers of competing species, indicating the role of resource supply and stoichiometry for biodiversity–ecosystem functioning relationships. Here, we merged theory on ecological stoichiometry with a framework of biodiversity–ecosystem functioning to understand how resource use transfers into primary production. We applied a structural equation model to define patterns of diversity–productivity relationships with respect to available resources. Meta-analysis was used to summarize the findings across ecosystem types ranging from aquatic ecosystems to grasslands and forests. As hypothesized, resource supply increased realized productivity and richness, but we found significant differences between ecosystems and study types. Increased richness was associated with increased productivity, although this effect was not seen in experiments. More even communities had lower productivity, indicating that biomass production is often maintained by a few dominant species, and reduced dominance generally reduced ecosystem productivity. This synthesis, which integrates observational and experimental studies in a variety of ecosystems and geographical regions, exposes common patterns and differences in biodiversity–functioning relationships, and increases the mechanistic understanding of changes in ecosystems productivity.


Science | 2016

Comment on "Worldwide evidence of a unimodal relationship between productivity and plant species richness"

Andrew T. Tredennick; Peter B. Adler; James B. Grace; William Stanley Harpole; Elizabeth T. Borer; Eric W. Seabloom; T.M. Anderson; Jonathan D. Bakker; Lori A. Biederman; Cynthia S. Brown; Yvonne M. Buckley; Chengjin Chu; Scott L. Collins; Michael J. Crawley; Philip A. Fay; Jennifer Firn; Daniel S. Gruner; Nicole Hagenah; Yann Hautier; Andy Hector; Helmut Hillebrand; Kevin P. Kirkman; Johannes M. H. Knops; Ramesh Laungani; Eric M. Lind; Andrew S. MacDougall; Rebecca L. McCulley; Charles E. Mitchell; Joslin L. Moore; John W. Morgan

Fraser et al. (Reports, 17 July 2015, p. 302) report a unimodal relationship between productivity and species richness at regional and global scales, which they contrast with the results of Adler et al. (Reports, 23 September 2011, p. 1750). However, both data sets, when analyzed correctly, show clearly and consistently that productivity is a poor predictor of local species richness.


Nature Ecology and Evolution | 2018

Local loss and spatial homogenization of plant diversity reduce ecosystem multifunctionality

Yann Hautier; Forest Isbell; Elizabeth T. Borer; Eric W. Seabloom; W. Stanley Harpole; Eric M. Lind; Andrew S. MacDougall; Carly J. Stevens; Peter B. Adler; Juan Alberti; Jonathan D. Bakker; Lars A. Brudvig; Yvonne M. Buckley; Marc W. Cadotte; Maria C. Caldeira; Enrique J. Chaneton; Chengjin Chu; Pedro Daleo; Chris R. Dickman; John M. Dwyer; Anu Eskelinen; Philip A. Fay; Jennifer Firn; Nicole Hagenah; Helmut Hillebrand; Oscar Iribarne; Kevin P. Kirkman; Johannes M. H. Knops; Kimberly J. La Pierre; Rebecca L. McCulley

Biodiversity is declining in many local communities while also becoming increasingly homogenized across space. Experiments show that local plant species loss reduces ecosystem functioning and services, but the role of spatial homogenization of community composition and the potential interaction between diversity at different scales in maintaining ecosystem functioning remains unclear, especially when many functions are considered (ecosystem multifunctionality). We present an analysis of eight ecosystem functions measured in 65 grasslands worldwide. We find that more diverse grasslands—those with both species-rich local communities (α-diversity) and large compositional differences among localities (β-diversity)—had higher levels of multifunctionality. Moreover, α- and β-diversity synergistically affected multifunctionality, with higher levels of diversity at one scale amplifying the contribution to ecological functions at the other scale. The identity of species influencing ecosystem functioning differed among functions and across local communities, explaining why more diverse grasslands maintained greater functionality when more functions and localities were considered. These results were robust to variation in environmental drivers. Our findings reveal that plant diversity, at both local and landscape scales, contributes to the maintenance of multiple ecosystem services provided by grasslands. Preserving ecosystem functioning therefore requires conservation of biodiversity both within and among ecological communities.Analysis of 65 grasslands worldwide from the Nutrient Network experiment reveals that plant communities with higher α- and β-diversity have higher levels of ecosystem multifunctionality, and that this effect is amplified across scales.

Collaboration


Dive into the Nicole Hagenah's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jennifer Firn

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

Kevin P. Kirkman

University of KwaZulu-Natal

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Philip A. Fay

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge