Nicole Hugouvieux-Cotte-Pattat
Centre national de la recherche scientifique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nicole Hugouvieux-Cotte-Pattat.
Molecular Microbiology | 1995
Ewa Lojkowska; Celine Masclaux; Martine Boccara; Janine Robert-Baudouy; Nicole Hugouvieux-Cotte-Pattat
Erwinia chrysanthemi 3937 secretes five major isoenzymes of pectate lyases encoded by the pelA, pelB, pelC, pelD and pelE genes. Recently, a new set of pectate lyases was identified in E. chrysanthemi mutants deleted of those pel genes. We cloned the pelL gene, encoding one of these secondary pectate lyases of E. chrysanthemi 3937, from a genomic bank of a strain deleted of the five major pel genes. The nucleotide sequence of the region containing the pelL gene was determined. The pelL reading frame is 1275 bases long, corresponding to a protein of 425 amino acids including a typical amino‐terminal signal sequence of 25 amino acids. Comparison of the amino acid sequences of PelL and the exo‐pectate lyase PelX of E. chrysanthemi EC16 revealed a low homology, limited to 220 residues of the central part of the proteins. No homology was detected with other bacterial pectinolytic enzymes. Regulation of pelL transcription was analysed using gene fusion. As shown for the other pel genes, the transcription of pelL is dependent on various environmental conditions. It is induced by pectic catabolic products and affected by growth phase, temperature, iron starvation, osmolarity, anaerobiosis, nitrogen starvation and catabolite repression. Regulation of pelL expression appeared to be independent of the KdgR repressor, which controls all the steps of pectin catabolism. In contrast, the pecS gene, which is involved in regulation of the synthesis of the major pectate lyases and of cellulase, also appeared to be involved in pelL expression. The PelL protein is able to macerate plant tissue. This enzyme has a basic isoelectric point, presents an endo‐cleaving activity on polygalacturonate or partially methylated pectin, with a basic pH optimum and an absolute requirement for Ca2+. The pelL mutant displayed a reduced virulence on potato tubers and Saintpaulia ionantha plants, demonstrating the important role of this enzyme in soft‐rot disease.
Molecular Microbiology | 1992
Guy Condemine; Corinne Dorel; Nicole Hugouvieux-Cotte-Pattat; Janine Robert-Baudouy
The out genes of Erwinia chrysanthemi are required for the translocation across the outer membrane of pectate lyases and cellulases. We present the characterization and the nucleotide sequence of five genes of the out cluster. The products of outS, B, C, D and E have significant homology with the Puts, B, C, D and E proteins necessary to the secretion of pullulanase in Klebsiella pneumoniae. An open reading frame, outT, located between outB and outC has no homology with the pul cluster but is involved in secretion. cute, outD and outE form an operon while outS, outB and outT constitute independent transcription units. outT and the outCDE operon are regulated by kdgR, the negative regulatory gene controlling pectinase production. outB and outS seem to be expressed constitutively.
Molecular Microbiology | 1997
Vladimir E. Shevchik; Nicole Hugouvieux-Cotte-Pattat
Erwinia chrysanthemi causes soft‐rot diseases of various plants by enzymatic degradation of the pectin in plant cell walls. The structural complexity of pectin requires the combined action of several pectinases for its efficient breakdown. Three types of pectinases have so far been identified in E. chrysanthemi: two pectin methyl esterases (PemA, PemB), a polygalacturonase (PehX), and eight pectate lyases (PelA, PelB, PelC, PelD, PelE, PelL, PelZ, PelX). We report in this paper the analysis of a novel enzyme, the pectin acetyl esterase encoded by the paeY gene. No bacterial form of pectin acetyl esterases has been described previously, while plant tissues and some pectinolytic fungi were found to produce similar enzymes. The paeY gene is present in a cluster of five pectinase‐encoding genes, pelA–pelE–pelD–paeY–pemA. The paeY open reading frame is 1650 bases long and encodes a 551‐residue precursor protein of 60 704 Da, including a 25‐amino‐acid signal peptide. PaeY shares one region of homology with a rhamnogalacturonan acetyl esterase of Aspergillus aculeatus. To characterize the enzyme, the paeY gene was overexpressed and its protein product was purified. PaeY releases acetate from sugar‐beet pectin and from various synthetic substrates. Moreover, the enzyme was shown to act in synergy with other pectinases. The de‐esterification rate by PaeY increased after previous demethylation of the pectins by PemA and after depolymerization of the pectin by pectate lyases. In addition, the degradation of sugar‐beet pectin by pectate lyases is favoured after the removal of methyl and acetyl groups by PemA and PaeY, respectively. The paeY gene was first identified on the basis of its regulation, which shares several characteristics with that of other pectinases. Analysis of the paeY transcription, using gene fusions, revealed that it is induced by pectic catabolic products and is affected by growth phase, oxygen limitation and catabolite repression. Regulation of paeY expression appears to be dependent on the KdgR repressor, which controls all the steps of pectin catabolism, and on the catabolite regulatory protein (CRP), the global activator of sugar catabolism. The contiguous pelD, paeY and pemA genes are transcribed as an operon from a promoter proximal to pelD which allows the regulation by KdgR and CRP. However, transcription can be interrupted at the intra‐operon Rho‐independent terminator situated between pelD and paeY. The paeY mutant inoculated into Saintpaulia plants was less invasive than the wild‐type E. chrysanthemi strain 3937, demonstrating the important role of PaeY in the soft‐rot disease.
Journal of Bacteriology | 2001
Frederic Page; Silvia G. Altabe; Nicole Hugouvieux-Cotte-Pattat; Jean-Marie Lacroix; Janine Robert-Baudouy; Jean-Pierre Bohin
Erwinia chrysanthemi is a phytopathogenic enterobacterium causing soft rot disease in a wide range of plants. Osmoregulated periplasmic glucans (OPGs) are intrinsic components of the gram-negative bacterial envelope. We cloned the opgGH operon of E. chrysanthemi, encoding proteins involved in the glucose backbone synthesis of OPGs, by complementation of the homologous locus mdoGH of Escherichia coli. OpgG and OpgH show a high level of similarity with MdoG and MdoH, respectively, and mutations in the opgG or opgH gene abolish OPG synthesis. The opg mutants exhibit a pleiotropic phenotype, including overproduction of exopolysaccharides, reduced motility, bile salt hypersensitivity, reduced protease, cellulase, and pectate lyase production, and complete loss of virulence. Coinoculation experiments support the conclusion that OPGs present in the periplasmic space of the bacteria are necessary for growth in the plant host.
Molecular Microbiology | 1996
Vladimir E. Shevchik; Guy Condemine; Nicole Hugouvieux-Cotte-Pattat; Janine Robert-Baudouy
The secretion of extracellular pectinases, among which there are least six isoenzymes of pectate lyase and one pectin methylesterase, allows the phytopathogenic bacterium Erwinia chrysanthemi to degrade pectin. A gene coding for a novel pectin methylesterase has been cloned from an E. chrysanthemi strain 3937 gene library. This gene, pemB, codes for a 433‐amino‐acid protein. The PemB N‐terminal region has the characteristics of lipoprotein signal sequences. We have shown that the PemB precursor is processed and that palmitate is incorporated into the mature protein. The PemB lipoprotein is not released into the extracellular medium and is localized in the outer membrane. The PemB sequence presents homology with other pectin methylesterases from bacterial and plant origin. pemB‐like proteins were detected in four other E. chrysanthemi strains but not in Erwinia carotovora strains. PemB was overproduced in Escherichia coli and purified to homogeneity. PemB activity is strongly increased by non‐ionic detergents. The enzyme is more active on methylated oligogalacturonides than on pectin, and it is necessary for the growth of the bacteria on oligomeric substrates. PemB is more probably involved in the degradation of methylated oligogalacturonides present in the periplasm of the bacteria, rather than in a direct action on extracellular pectin. pemB expression is inducible in the presence of pectin and is controlled by the negative regulator KdgR.
Molecular Plant-microbe Interactions | 2001
William Nasser; Michel Faelen; Nicole Hugouvieux-Cotte-Pattat; Sylvie Reverchon
The ability of the enterobacterium Erwinia chrysanthemi to induce pathogenesis in plant tissue is strongly related to the massive production of plant-cell-wall-degrading enzymes (pectinases, cellulases, and proteases). Additional factors, including flagellar proteins and exopolysaccharides (EPS), also are required for the efficient colonization of plants. Production of these virulence factors, particularly pectate lyases, the main virulence determinant, is tightly regulated by environmental conditions. The possible involvement of the protein H-NS in this process was investigated. The E. chrysanthemi hns gene was cloned by complementation of an Escherichia coli hns mutation. Its nucleotide sequence contains a 405-bp open reading frame that codes for a protein with 85% identity to the E. coli H-NS protein. An E. chrysanthemi hns mutant was constructed by reverse genetics. This mutant displays a reduced growth rate and motility but an increased EPS synthesis and sensitivity toward high osmolarity. Furthermore, pectate lyase production is dramatically reduced in this mutant. The hns mutation acts on at least two conditions affecting pectate lyase synthesis: induction of pectate lyase synthesis at low temperatures (25 degrees C) is no longer observed in the hns mutant and induction of pectate lyase production occurs in the late stationary growth phase in the hns background, instead of in the late exponential growth phase as it does in the parental strain. Moreover, the E. chrysanthemi hns mutant displays reduced virulence on plants. Taken together, these data suggest that H-NS plays a crucial role in the expression of the virulence genes and in the pathogenicity of E. chrysanthemi.
Molecular Microbiology | 1999
William Nasser; Vladimir E. Shevchik; Nicole Hugouvieux-Cotte-Pattat
Erwinia chrysanthemi 3937 secretes an arsenal of pectinolytic enzymes including several pectate lyases encoded by the pel genes. We characterized a novel cluster of pectinolytic genes consisting of the three adjacent genes pehV, pehW and pehX, whose products have polygalacturonase activity. The high similarity between the three genes suggests that they result from duplication of an ancestral gene. The transcription of pehV, pehW and pehX is dependent on several environmental conditions. They are induced by pectin catabolic products and this induction results from inactivation of the KdgR repressor which controls almost all the steps of pectin catabolism. The presence of calcium ions strongly reduced the transcription of the three peh genes. Their expression was also affected by growth phase, osmolarity, oxygen limitation and nitrogen starvation. In addition, the pehX transcription is affected by catabolite repression and controlled by the activator protein CRP. PecS, which was initially isolated as a repressor of virulence factors, acts as an activator of the peh transcription. We showed that the three regulators KdgR, PecS and CRP act by direct interaction with the promoter regions of the peh genes. Analysis of simultaneous binding of KdgR, PecS, CRP and RNA polymerase indicated that the activator effect of PecS results from a competition between PecS and KdgR for the occupation of overlapping binding sites. Thus, to activate peh transcription, PecS behaves as an anti‐repressor against KdgR.
Journal of Bacteriology | 2003
Vladimir E. Shevchik; Nicole Hugouvieux-Cotte-Pattat
Erwinia chrysanthemi causes soft-rot diseases of various plants by enzymatic degradation of the pectin in plant cell walls. Pectin is a complex polysaccharide. The main chain is constituted of galacturonate residues, and some of them are modified by methyl and/or acetyl esterification. Esterases are necessary to remove these modifications and, thus, to facilitate the further degradation of the polysaccharidic chain. In addition to PaeY, the first pectin acetylesterase identified in the E. chrysanthemi strain 3937, we showed that this bacterium produces a second pectin acetylesterase encoded by the gene paeX. The paeX open reading frame encodes a 322-residue precursor protein of 34,940 Da, including a 21-amino-acid signal peptide. Analysis of paeX transcription, by using gene fusions, revealed that it is induced by pectic catabolic products and affected by catabolite repression. The expression of paeX is regulated by the repressor KdgR, which controls all the steps of pectin catabolism; by the repressor PecS, which controls most of the pectinase genes; and by catabolite regulatory protein, the global activator of sugar catabolism. The paeX gene is situated in a cluster of genes involved in the catabolism and transport of pectic oligomers. In induced conditions, the two contiguous genes kdgM, encoding an oligogalacturonate-specific porin, and paeX are both transcribed as an operon from a promoter proximal to kdgM, but transcription of paeX can also be uncoupled from that of kdgM in noninduced conditions. PaeX is homologous to the C-terminal domain of the Butyrivibrio fibriosolvens xylanase XynB and to a few bacterial esterases. PaeX contains the typical box (GxSxG) corresponding to the active site of the large family of serine hydrolases. Purified PaeX releases acetate from various synthetic substrates and from sugar beet pectin. The PaeX activity increased after previous depolymerization and demethylation of pectin, indicating that its preferred substrates are nonmethylated oligogalacturonides. PaeX is mostly found in the periplasmic space of E. chrysanthemi. These data suggest that PaeX is mainly involved in the deacetylation of esterified oligogalacturonides that enter the periplasm by the KdgM porin.
Molecular Microbiology | 1998
Vladimir E. Shevchik; Martine Boccara; Regine Vedel; Nicole Hugouvieux-Cotte-Pattat
Erwinia chrysanthemi causes soft rot on various plants. The maceration of plant tissues is mainly due to the action of endopectate lyases. The E. chrysanthemi strain 3937 produces eight endopectate lyases (PelA, PelB, PelC, PelD, PelE, PelI, PelL and PelZ) that are secreted by the Out pathway. The necrotic response elicited by the wild‐type E. chrysanthemi strain on tobacco leaves is due to an extracellular protein secreted by the Out machinery. Purification of the active factor revealed that it corresponds to a pectate lyase presenting immunological cross‐reaction with PelI. Analysis of pelI and out mutants indicated that the necrosis‐inducing pectate lyase results from a post‐translational modification of PelI occurring extracellularly both in culture media and in planta. This modification consists of the cleavage of 97 N‐terminal amino acids by the extracellular proteases of E. chrysanthemi. The enzymatic properties of the maturated form, PelI‐3, are not, or only weakly, modified. However, this maturation gives rise to a small size and basic form that is active as a defence elicitor in plants.
Journal of Biological Chemistry | 1999
Harry C. M. Kester; Didier Magaud; Caroline Roy; Daniel Anker; Alain Doutheau; Vladimir E. Shevchik; Nicole Hugouvieux-Cotte-Pattat; Jacques A. E. Benen; Jaap Visser
Two monomethyl esters of α-(1–4)-linked d-galacturonic dimers and three monomethyl esters of α-(1–4)-linked d-galacturonic acid trimers were synthesized chemically and further used as substrates in order to establish the substrate specificity of six different endopolygalacturonases from Aspergillus niger, one exopolygalacturonase from Aspergillus tubingensis, and four selected Erwinia chrysanthemi pectinases; exopolygalacturonan hydrolase X (PehX), exopolygalacturonate lyase X (PelX), exopectate lyase W (PelW), and oligogalacturonan lyase (Ogl). All A. niger endopolygalacturonases (PGs) were unable to hydrolyze the two monomethyldigalacturonates and 2-methyltrigalacturonate, whereas 1-methyltrigalacturonate was only cleaved by PGI, PGII, and PGB albeit at an extremely low rate. The hydrolysis of 3-methyltrigalacturonate into 2-methyldigalacturonate and galacturonate by all endopolygalacturonases demonstrates that these enzymes can accommodate a methylgalacturonate at subsite −2. TheA. tubingensis exopolygalacturonase hydrolyzed the monomethyl-esterified digalacturonates and trigalacturonates although at lower rates than for the corresponding oligogalacturonates. 1-Methyltrigalacturonate was hydrolyzed at the same rate as trigalacturonate which demonstrates that the presence of a methyl ester at the third galacturonic acid from the nonreducing end does not have any effect on the performance of exopolygalacturonase. Of the fourE. chrysanthemi pectinases, Ogl was the only enzyme able to cleave digalacturonate, whereas all four enzymes cleaved trigalacturonate. Ogl does not cleave monomethyl-esterified digalacturonate and trigalacturonate in case the second galacturonic acid residue from the reducing end is methyl-esterified. PehX did not hydrolyze any of the monomethyl-esterified trigalacturonates. The two lyases, PelX and PelW, were both only able to cleave 1-methyltrigalacturonate into Δ4,5-unsaturated 1-methyldigalacturonate and galacturonate.