Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nicole K. Clay is active.

Publication


Featured researches published by Nicole K. Clay.


Science | 2009

Glucosinolate Metabolites Required for an Arabidopsis Innate Immune Response

Nicole K. Clay; Adewale M. Adio; Carine Denoux; Georg Jander; Frederick M. Ausubel

The perception of pathogen or microbe-associated molecular pattern molecules by plants triggers a basal defense response analogous to animal innate immunity and is defined partly by the deposition of the glucan polymer callose at the cell wall at the site of pathogen contact. Transcriptional and metabolic profiling in Arabidopsis mutants, coupled with the monitoring of pathogen-triggered callose deposition, have identified major roles in pathogen response for the plant hormone ethylene and the secondary metabolite 4-methoxy-indol-3-ylmethylglucosinolate. Two genes, PEN2 and PEN3, are also necessary for resistance to pathogens and are required for both callose deposition and glucosinolate activation, suggesting that the pathogen-triggered callose response is required for resistance to microbial pathogens. Our study shows that well-studied plant metabolites, previously identified as important in avoiding damage by herbivores, are also required as a component of the plant defense response against microbial pathogens.


The Plant Cell | 2010

Innate Immune Responses Activated in Arabidopsis Roots by Microbe-Associated Molecular Patterns

Yves Alain Millet; Cristian H. Danna; Nicole K. Clay; Wisuwat Songnuan; Matthew D. Simon; Danièle Werck-Reichhart; Frederick M. Ausubel

This study describes Arabidopsis root innate immune responses to various microbial elicitors and their salicylic acid signaling-independent suppression by coronatine, a phytotoxin produced by Pseudomonas syringae. These experiments have revealed new features of the root response to pathogen attack and the mechanisms that pathogens in turn may employ to block the host innate immune response. Despite the fact that roots are the organs most subject to microbial interactions, very little is known about the response of roots to microbe-associated molecular patterns (MAMPs). By monitoring transcriptional activation of β-glucuronidase reporters and MAMP-elicited callose deposition, we show that three MAMPs, the flagellar peptide Flg22, peptidoglycan, and chitin, trigger a strong tissue-specific response in Arabidopsis thaliana roots, either at the elongation zone for Flg22 and peptidoglycan or in the mature parts of the roots for chitin. Ethylene signaling, the 4-methoxy-indole-3-ylmethylglucosinolate biosynthetic pathway, and the PEN2 myrosinase, but not salicylic acid or jasmonic acid signaling, play major roles in this MAMP response. We also show that Flg22 induces the cytochrome P450 CYP71A12-dependent exudation of the phytoalexin camalexin by Arabidopsis roots. The phytotoxin coronatine, an Ile-jasmonic acid mimic produced by Pseudomonas syringae pathovars, suppresses MAMP-activated responses in the roots. This suppression requires the E3 ubiquitin ligase COI1 as well as the transcription factor JIN1/MYC2 but does not rely on salicylic acid–jasmonic acid antagonism. These experiments demonstrate the presence of highly orchestrated and tissue-specific MAMP responses in roots and potential pathogen-encoded mechanisms to block these MAMP-elicited signaling pathways.


Nature Genetics | 2009

A transcriptome atlas of rice cell types uncovers cellular, functional and developmental hierarchies

Yuling Jiao; S. Lori Tausta; Neeru Gandotra; Ning Sun; Tie Liu; Nicole K. Clay; Teresa Ceserani; Meiqin Chen; Ligeng Ma; Matthew E. Holford; Hui-yong Zhang; Hongyu Zhao; Xing Wang Deng; Timothy Nelson

The functions of the plant body rely on interactions among distinct and nonequivalent cell types. The comparison of transcriptomes from different cell types should expose the transcriptional networks that underlie cellular attributes and contributions. Using laser microdissection and microarray profiling, we have produced a cell type transcriptome atlas that includes 40 cell types from rice (Oryza sativa) shoot, root and germinating seed at several developmental stages, providing patterns of cell specificity for individual genes and gene classes. Cell type comparisons uncovered previously unrecognized properties, including cell-specific promoter motifs and coexpressed cognate binding factor candidates, interaction partner candidates and hormone response centers. We inferred developmental regulatory hierarchies of gene expression in specific cell types by comparison of several stages within root, shoot and embryo.


Plant Physiology | 2005

Arabidopsis thickvein Mutation Affects Vein Thickness and Organ Vascularization, and Resides in a Provascular Cell-Specific Spermine Synthase Involved in Vein Definition and in Polar Auxin Transport

Nicole K. Clay; Timothy Nelson

Polar auxin transport has been implicated in the induction of vascular tissue and in the definition of vein positions. Leaves treated with chemical inhibitors of polar auxin transport exhibited vascular phenotypes that include increased vein thickness and vascularization. We describe a recessive mutant, thickvein (tkv), which develops thicker veins in leaves and in inflorescence stems. The increased vein thickness is attributable to an increased number of vascular cells. Mutant plants have smaller leaves and shorter inflorescence stems, and this reduction in organ size and height is accompanied by an increase in organ vascularization, which appears to be attributable to an increase in the recruitment of cells into veins. Furthermore, although floral development is normal, auxin transport in the inflorescence stem is significantly reduced in the mutant, suggesting that the defect in auxin transport is responsible for the vascular phenotypes. In the primary root, the veins appear morphologically normal, but root growth in the tkv mutant is hypersensitive to exogenous cytokinin. The tkv mutation was found to reside in the ACL5 gene, which encodes a spermine synthase and whose expression is specific to provascular cells. We propose that ACL5/TKV is involved in vein definition (defining the boundaries between veins and nonvein regions) and in polar auxin transport, and that polyamines are involved in this process.


The Plant Cell | 2005

The Recessive Epigenetic swellmap Mutation Affects the Expression of Two Step II Splicing Factors Required for the Transcription of the Cell Proliferation Gene STRUWWELPETER and for the Timing of Cell Cycle Arrest in the Arabidopsis Leaf

Nicole K. Clay; Timothy Nelson

Generally, cell division can be uncoupled from multicellular development, but more recent evidence suggests that cell cycle progression and arrest is coupled to organogenesis and growth. We describe a recessive mutant, swellmap (smp), with reduced organ size and cell number. This defect is partially compensated for by an increase in final cell size. The mutation causes a precocious arrest of cell proliferation in the organ primordium and possibly reduces the rate of cell division there. The mutation proved to be an epigenetic mutation (renamed smpepi) that defined a single locus, SMP1, but affected the expression of both SMP1 and a second very similar gene, SMP2. Both genes encode CCHC zinc finger proteins with similarities to step II splicing factors involved in 3′ splice site selection. Genetic knockouts demonstrate that the genes are functionally redundant and essential. SMP1 expression is associated with regions of cell proliferation. Overexpression of SMP1 produced an increase in organ cell number and a partial decrease in cell expansion. The smpepi mutation does not affect expression of eukaryotic cell cycle regulator genes CYCD3;1 and CDC2A but affects expression of the cell proliferation gene STRUWWELPETER (SWP) whose protein has similarities to Med150/Rgr1-like subunits of the Mediator complex required for transcriptional activation. Introduction of SWP cDNA into smpepi plants fully restored them to wild-type, but the expression of both SMP1 and SMP2 were also restored in these lines, suggesting a physical interaction among the three proteins and/or genes. We propose that step II splicing factors and a transcriptional Mediator-like complex are involved in the timing of cell cycle arrest during leaf development.


Nature | 2015

A new cyanogenic metabolite in Arabidopsis required for inducible pathogen defence

Jakub Rajniak; Brenden Barco; Nicole K. Clay; Elizabeth S. Sattely

Thousands of putative biosynthetic genes in Arabidopsis thaliana have no known function, which suggests that there are numerous molecules contributing to plant fitness that have not yet been discovered. Prime among these uncharacterized genes are cytochromes P450 upregulated in response to pathogens. Here we start with a single pathogen-induced P450 (ref. 5), CYP82C2, and use a combination of untargeted metabolomics and coexpression analysis to uncover the complete biosynthetic pathway to 4-hydroxyindole-3-carbonyl nitrile (4-OH-ICN), a previously unknown Arabidopsis metabolite. This metabolite harbours cyanogenic functionality that is unprecedented in plants and exceedingly rare in nature; furthermore, the aryl cyanohydrin intermediate in the 4-OH-ICN pathway reveals a latent capacity for cyanogenic glucoside biosynthesis in Arabidopsis. By expressing 4-OH-ICN biosynthetic enzymes in Saccharomyces cerevisiae and Nicotiana benthamiana, we reconstitute the complete pathway in vitro and in vivo and validate the functions of its enzymes. Arabidopsis 4-OH-ICN pathway mutants show increased susceptibility to the bacterial pathogen Pseudomonas syringae, consistent with a role in inducible pathogen defence. Arabidopsis has been the pre-eminent model system for studying the role of small molecules in plant innate immunity; our results uncover a new branch of indole metabolism distinct from the canonical camalexin pathway, and support a role for this pathway in the Arabidopsis defence response. These results establish a more complete framework for understanding how the model plant Arabidopsis uses small molecules in pathogen defence.


Plant Journal | 2008

Vein patterning screens and the defectively organized tributaries mutants in Arabidopsis thaliana.

Jalean J. Petricka; Nicole K. Clay; Timothy Nelson

Leaf veins form a closed network that transports essential photosynthates, water and signaling molecules to the developing plant. The formation of the patterns of these networks during leaf ontogeny is an active subject of modeling and computer simulation. To investigate the vein patterning process, we performed screens for defects in juvenile leaf vein patterning in Arabidopsis thaliana lines subjected to mutagenesis via diepoxybutane, activation tagging or the Dissociation/Activator transposon. We identified over 40 vein pattern defective lines, providing a phenotypic resource for the testing of vein patterning models. In addition, we report the chromosomal linkage for 13 of these, eight of which were successfully cloned. We further describe the phenotypes of five of these mutants, which we call the defectively organized tributaries (dot) mutants, and their corresponding molecular identities. The diversity of the individual genes affected in this collection of pattern mutants suggests that vein pattern is highly sensitive to perturbations in many cellular processes. Despite this diversity of causes, the resulting pattern defects fall into a limited number of classes, including parallel, spurred, misaligned, open, midvein gap and irregularly spaced. These classes may represent sensitivities to cellular processes associated with the DOT genes. The ontogeny of common defective patterns should be accommodated into any robust model for the ontogeny and evolution of pattern.


Phytochemistry | 2016

Regulation of plant secondary metabolism and associated specialized cell development by MYBs and bHLHs.

William R. Chezem; Nicole K. Clay

Plants are unrivaled in the natural world in both the number and complexity of secondary metabolites they produce, and the ubiquitous phenylpropanoids and the lineage-specific glucosinolates represent two such large and chemically diverse groups. Advances in genome-enabled biochemistry and metabolomic technologies have greatly increased the understanding of their metabolic networks in diverse plant species. There also has been some progress in elucidating the gene regulatory networks that are key to their synthesis, accumulation and function. This review highlights what is currently known about the gene regulatory networks and the stable sub-networks of transcription factors at their cores that regulate the production of these plant secondary metabolites and the differentiation of specialized cell types that are equally important to their defensive function. Remarkably, some of these core components are evolutionarily conserved between secondary metabolism and specialized cell development and across distantly related plant species. These findings suggest that the more ancient gene regulatory networks for the differentiation of fundamental cell types may have been recruited and remodeled for the generation of the vast majority of plant secondary metabolites and their specialized tissues.


Frontiers in Plant Science | 2016

Ternary WD40 Repeat-Containing Protein Complexes: Evolution, Composition and Roles in Plant Immunity

Jimi C. Miller; William R. Chezem; Nicole K. Clay

Plants, like mammals, rely on their innate immune system to perceive and discriminate among the majority of their microbial pathogens. Unlike mammals, plants respond to this molecular dialog by unleashing a complex chemical arsenal of defense metabolites to resist or evade pathogen infection. In basal or non-host resistance, plants utilize signal transduction pathways to detect “non-self,” “damaged-self,” and “altered-self”- associated molecular patterns and translate these “danger” signals into largely inducible chemical defenses. The WD40 repeat (WDR)-containing proteins Gβ and TTG1 are constituents of two independent ternary protein complexes functioning at opposite ends of a plant immune signaling pathway. They are also encoded by single-copy genes that are ubiquitous in higher plants, implying the limited diversity and functional conservation of their respective complexes. In this review, we summarize what is currently known about the evolutionary history of these WDR-containing ternary complexes, their repertoire and combinatorial interactions, and their downstream effectors and pathways in plant defense.


The Plant Cell | 2017

SG2-type R2R3-MYB transcription factor MYB15 controls defense-induced lignification and basal immunity in Arabidopsis

William R. Chezem; Altamash Memon; Fu-Shuang Li; Jing-Ke Weng; Nicole K. Clay

SG2-type R2R3-MYB transcription factor MYB15 regulates preformed and inducible Arabidopsis defense through the production of antimicrobial coumarin scopoletin and G-rich lignin, respectively. Lignification of cell wall appositions is a conserved basal defense mechanism in the plant innate immune response. However, the genetic pathway controlling defense-induced lignification remains unknown. Here, we demonstrate the Arabidopsis thaliana SG2-type R2R3-MYB transcription factor MYB15 as a regulator of defense-induced lignification and basal immunity. Loss of MYB15 reduces the content but not the composition of defense-induced lignin, whereas constitutive expression of MYB15 increases lignin content independently of immune activation. Comparative transcriptional and metabolomics analyses implicate MYB15 as necessary for the defense-induced synthesis of guaiacyl lignin and the basal synthesis of the coumarin metabolite scopoletin. MYB15 directly binds to the secondary wall MYB-responsive element consensus sequence, which encompasses the AC elements, to drive lignification. The myb15 and lignin biosynthetic mutants show increased susceptibility to the bacterial pathogen Pseudomonas syringae, consistent with defense-induced lignin having a major role in basal immunity. A scopoletin biosynthetic mutant also shows increased susceptibility independently of immune activation, consistent with a role in preformed defense. Our results support a role for phenylalanine-derived small molecules in preformed and inducible Arabidopsis defense, a role previously dominated by tryptophan-derived small molecules. Understanding the regulatory network linking lignin biosynthesis to plant growth and defense will help lignin engineering efforts to improve the production of biofuels and aromatic industrial products as well as increase disease resistance in energy and agricultural crops.

Collaboration


Dive into the Nicole K. Clay's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Georg Jander

Boyce Thompson Institute for Plant Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adewale M. Adio

Boyce Thompson Institute for Plant Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge