Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jalean J. Petricka is active.

Publication


Featured researches published by Jalean J. Petricka.


Annual Review of Plant Biology | 2012

Control of Arabidopsis Root Development

Jalean J. Petricka; Cara M. Winter; Philip N. Benfey

The Arabidopsis root has been the subject of intense research over the past decades. This research has led to significantly improved understanding of the molecular mechanisms underlying root development. Key insights into the specification of individual cell types, cell patterning, growth and differentiation, branching of the primary root, and responses of the root to the environment have been achieved. Transcription factors and plant hormones play key regulatory roles. Recently, mechanisms involving protein movement and the oscillation of gene expression have also been uncovered. Root gene regulatory networks controlling root development have been reconstructed from genome-wide profiling experiments, revealing novel molecular connections and models. Future refinement of these models will lead to a more complete description of the complex molecular interactions that give rise to a simple growing root.


Developmental Cell | 2011

Cell Identity Regulators Link Development and Stress Responses in the Arabidopsis Root

Anjali S. Iyer-Pascuzzi; Terry L. Jackson; Hongchang Cui; Jalean J. Petricka; Wolfgang Busch; Hironaka Tsukagoshi; Philip N. Benfey

Stress responses in plants are tightly coordinated with developmental processes, but interaction of these pathways is poorly understood. We used genome-wide assays at high spatiotemporal resolution to understand the processes that link development and stress in the Arabidopsis root. Our meta-analysis finds little evidence for a universal stress response. However, common stress responses appear to exist with many showing cell type specificity. Common stress responses may be mediated by cell identity regulators because mutations in these genes resulted in altered responses to stress. Evidence for a direct role for cell identity regulators came from genome-wide binding profiling of the key regulator SCARECROW, which showed binding to regulatory regions of stress-responsive genes. Coexpression in response to stress was used to identify genes involved in specific developmental processes. These results reveal surprising linkages between stress and development at cellular resolution, and show the power of multiple genome-wide data sets to elucidate biological processes.


Proceedings of the National Academy of Sciences of the United States of America | 2012

The protein expression landscape of the Arabidopsis root

Jalean J. Petricka; Monica A. Schauer; Molly Megraw; Natalie W. Breakfield; J. Will Thompson; Stoyan Georgiev; Erik J. Soderblom; Uwe Ohler; M.A. Moseley; Ueli Grossniklaus; Philip N. Benfey

Because proteins are the major functional components of cells, knowledge of their cellular localization is crucial to gaining an understanding of the biology of multicellular organisms. We have generated a protein expression map of the Arabidopsis root providing the identity and cell type-specific localization of nearly 2,000 proteins. Grouping proteins into functional categories revealed unique cellular functions and identified cell type-specific biomarkers. Cellular colocalization provided support for numerous protein–protein interactions. With a binary comparison, we found that RNA and protein expression profiles are weakly correlated. We then performed peak integration at cell type-specific resolution and found an improved correlation with transcriptome data using continuous values. We performed GeLC-MS/MS (in-gel tryptic digestion followed by liquid chromatography-tandem mass spectrometry) proteomic experiments on mutants with ectopic and no root hairs, providing complementary proteomic data. Finally, among our root hair-specific proteins we identified two unique regulators of root hair development.


Genome Research | 2012

High-resolution experimental and computational profiling of tissue-specific known and novel miRNAs in Arabidopsis

Natalie W. Breakfield; David L. Corcoran; Jalean J. Petricka; Jeffrey Shen; Juthamas Sae-Seaw; Ignacio Rubio-Somoza; Detlef Weigel; Uwe Ohler; Philip N. Benfey

Small non-coding RNAs (ncRNAs) are key regulators of plant development through modulation of the processing, stability, and translation of larger RNAs. We present small RNA data sets comprising more than 200 million aligned Illumina sequence reads covering all major cell types of the root as well as four distinct developmental zones. MicroRNAs (miRNAs) constitute a class of small ncRNAs that are particularly important for development. Of the 243 known miRNAs, 133 were found to be expressed in the root, and most showed tissue- or zone-specific expression patterns. We identified 66 new high-confidence miRNAs using a computational pipeline, PIPmiR, specifically developed for the identification of plant miRNAs. PIPmiR uses a probabilistic model that combines RNA structure and expression information to identify miRNAs with high precision. Knockdown of three of the newly identified miRNAs results in altered root growth phenotypes, confirming that novel miRNAs predicted by PIPmiR have functional relevance.


Plant Physiology | 2007

Arabidopsis Nucleolin Affects Plant Development and Patterning

Jalean J. Petricka; Timothy Nelson

Nucleolin is a major nucleolar protein implicated in many aspects of ribosomal biogenesis, including early events such as processing of the large 35S preribosomal RNA. We found that the Arabidopsis (Arabidopsis thaliana) parallel1 (parl1) mutant, originally identified by its aberrant leaf venation, corresponds to the Arabidopsis nucleolin gene. parl1 mutants display parallel leaf venation, aberrant localization of the provascular marker Athb8:β-glucuronidase, the auxin-sensitive reporter DR5:β-glucuronidase, and auxin-dependent growth defects. PARL1 is highly similar to the yeast (Saccharomyces cerevisiae) nucleolin NUCLEAR SIGNAL RECOGNITION 1 (NSR1) multifunctional protein; the Arabidopsis PARL1 gene can rescue growth defects of yeast nsr1 null mutants. This suggests that PARL1 protein may have roles similar to those of the yeast nucleolin in nuclear signal recognition, ribosomal processing, and ribosomal subunit accumulation. Based on the range of auxin-related defects in parl1 mutants, we propose that auxin-dependent organ growth and patterning is highly sensitive to the efficiency of nucleolin-dependent ribosomal processing.


Current Opinion in Genetics & Development | 2008

Root layers: complex regulation of developmental patterning.

Jalean J. Petricka; Philip N. Benfey

Developmental patterning events involve cell fate specification and maintenance processes in diverse, multicellular organisms. The simple arrangement of tissue layers in the Arabidopsis thaliana root provides a highly tractable system for the study of these processes. This review highlights recent work addressing the patterning of root tissues focusing on the factors involved and their complex regulation. In the past two years studies of root patterning have indicated that chromatin remodeling, protein movement, transcriptional networks, and an auxin gradient, all contribute to the complexity inherent in developmental patterning events within the root. As a result, future research advances in this field will require tissue-specific information at both the single gene and global level.


Science | 2015

Transcriptional control of tissue formation throughout root development

Miguel A. Moreno-Risueno; Rosangela Sozzani; Galip Gürkan Yardımcı; Jalean J. Petricka; Teva Vernoux; Ikram Blilou; Jose M. Alonso; Cara M. Winter; Uwe Ohler; Ben Scheres; Philip N. Benfey

Multifunctional root regulators The growing plant root undergoes a variety of developmental steps that determine thickness and branching as the roots elaborate. Moreno-Risueno et al. identify a suite of transcription factors, some of which mobilize between cells, that regulate shifting fates during root growth. The same set of transcription factors governs identity and proliferation of the stem cells as well as the fates of daughter cells. Science, this issue p. 426 Plant tissue organization is maintained at all formative steps during root growth by the same set of transcription factors. Tissue patterns are dynamically maintained. Continuous formation of plant tissues during postembryonic growth requires asymmetric divisions and the specification of cell lineages. We show that the BIRDs and SCARECROW regulate lineage identity, positional signals, patterning, and formative divisions throughout Arabidopsis root growth. These transcription factors are postembryonic determinants of the ground tissue stem cells and their lineage. Upon further activation by the positional signal SHORT-ROOT (a mobile transcription factor), they direct asymmetric cell divisions and patterning of cell types. The BIRDs and SCARECROW with SHORT-ROOT organize tissue patterns at all formative steps during growth, ensuring developmental plasticity.


Plant Journal | 2008

Vein patterning screens and the defectively organized tributaries mutants in Arabidopsis thaliana.

Jalean J. Petricka; Nicole K. Clay; Timothy Nelson

Leaf veins form a closed network that transports essential photosynthates, water and signaling molecules to the developing plant. The formation of the patterns of these networks during leaf ontogeny is an active subject of modeling and computer simulation. To investigate the vein patterning process, we performed screens for defects in juvenile leaf vein patterning in Arabidopsis thaliana lines subjected to mutagenesis via diepoxybutane, activation tagging or the Dissociation/Activator transposon. We identified over 40 vein pattern defective lines, providing a phenotypic resource for the testing of vein patterning models. In addition, we report the chromosomal linkage for 13 of these, eight of which were successfully cloned. We further describe the phenotypes of five of these mutants, which we call the defectively organized tributaries (dot) mutants, and their corresponding molecular identities. The diversity of the individual genes affected in this collection of pattern mutants suggests that vein pattern is highly sensitive to perturbations in many cellular processes. Despite this diversity of causes, the resulting pattern defects fall into a limited number of classes, including parallel, spurred, misaligned, open, midvein gap and irregularly spaced. These classes may represent sensitivities to cellular processes associated with the DOT genes. The ontogeny of common defective patterns should be accommodated into any robust model for the ontogeny and evolution of pattern.


The Plant Cell | 2014

Paired-End Analysis of Transcription Start Sites in Arabidopsis Reveals Plant-Specific Promoter Signatures

Taj Morton; Jalean J. Petricka; David L. Corcoran; Song Li; Cara M. Winter; Alexa Carda; Philip N. Benfey; Uwe Ohler; Molly Megraw

This work presents a genome-scale data set that precisely identifies transcription start sites for a majority of Arabidopsis genes, revealing that plant promoters are not primarily TATA based and have an unexpected structure composed of many position-specific sequence elements. This analysis identifies combinations of factors that are likely to lead to transcription initiation. Understanding plant gene promoter architecture has long been a challenge due to the lack of relevant large-scale data sets and analysis methods. Here, we present a publicly available, large-scale transcription start site (TSS) data set in plants using a high-resolution method for analysis of 5′ ends of mRNA transcripts. Our data set is produced using the paired-end analysis of transcription start sites (PEAT) protocol, providing millions of TSS locations from wild-type Columbia-0 Arabidopsis thaliana whole root samples. Using this data set, we grouped TSS reads into “TSS tag clusters” and categorized clusters into three spatial initiation patterns: narrow peak, broad with peak, and weak peak. We then designed a machine learning model that predicts the presence of TSS tag clusters with outstanding sensitivity and specificity for all three initiation patterns. We used this model to analyze the transcription factor binding site content of promoters exhibiting these initiation patterns. In contrast to the canonical notions of TATA-containing and more broad “TATA-less” promoters, the model shows that, in plants, the vast majority of transcription start sites are TATA free and are defined by a large compendium of known DNA sequence binding elements. We present results on the usage of these elements and provide our Plant PEAT Peaks (3PEAT) model that predicts the presence of TSSs directly from sequence.


Cold Spring Harbor Perspectives in Biology | 2009

Symmetry Breaking in Plants: Molecular Mechanisms Regulating Asymmetric Cell Divisions in Arabidopsis

Jalean J. Petricka; Jaimie M. Van Norman; Philip N. Benfey

Asymmetric cell division generates cell types with different specialized functions or fates. This type of division is critical to the overall cellular organization and development of many multicellular organisms. In plants, regulated asymmetric cell divisions are of particular importance because cell migration does not occur. The influence of extrinsic cues on asymmetric cell division in plants is well documented. Recently, candidate intrinsic factors have been identified and links between intrinsic and extrinsic components are beginning to be elucidated. A novel mechanism in breaking symmetry was revealed that involves the movement of typically intrinsic factors between plant cells. As we learn more about the regulation of asymmetric cell divisions in plants, we can begin to reflect on the similarities and differences between the strategies used by plants and animals. Focusing on the underlying molecular mechanisms, this article describes three selected cases of symmetry-breaking events in the model plant Arabidopsis thaliana. These examples occur in early embryogenesis, stomatal development, and ground tissue formation in the root.

Collaboration


Dive into the Jalean J. Petricka's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Uwe Ohler

Max Delbrück Center for Molecular Medicine

View shared research outputs
Top Co-Authors

Avatar

Cara M. Winter

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Molly Megraw

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Natalie W. Breakfield

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge