Nicole L. Mendell
University of Texas Medical Branch
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nicole L. Mendell.
Journal of General Virology | 2009
Thomas Welte; Krystle Reagan; Hao Fang; Carlos Machain-Williams; Xin Zheng; Nicole L. Mendell; Gwong Jen J Chang; Ping Wu; Carol D. Blair; Tian Wang
The Toll-like receptor (TLR) 7 response represents a vital host-defence mechanism in a murine model of systemic West Nile virus (WNV) infection. Here, we investigated the role of the TLR7-induced immune response following cutaneous WNV infection. We found that there was no difference in susceptibility to WNV encephalitis between wild-type and TLR7(-/-) mice upon intradermal injection or infected mosquito feeding. Viral load analysis revealed similar levels of WNV RNA in the peripheral tissues and brains of these two groups of mice following intradermal infection. There was a higher level of cytokines in the blood of wild-type mice at early stages of infection; however, this difference was diminished in the blood and brains at later stages. Langerhans cells (LCs) are permissive to WNV infection and migrate from the skin to draining lymph nodes upon intradermal challenge. Our data showed that WNV infection of TLR7(-/-) keratinocytes was significantly higher than that of wild-type keratinocytes. Infection of wild-type keratinocytes induced higher levels of alpha interferon and interleukin-1beta (IL-1beta), IL-6 and IL-12, which might promote LC migration from the skin. Co-culture of naïve LCs of wild-type mice with WNV-infected wild-type keratinocytes resulted in the production of more IL-6 and IL-12 than with TLR7(-/-) keratinocytes or by cultured LCs alone. Moreover, LCs in the epidermis were reduced in wild-type mice, but not in TLR7(-/-) mice, following intradermal WNV infection. Overall, our results suggest that the TLR7 response following cutaneous infection promotes LC migration from the skin, which might compromise its protective effect in systemic infection.
Fems Immunology and Medical Microbiology | 2011
Thomas Welte; Judith F. Aronson; Bin Gong; Aparna Rachamallu; Nicole L. Mendell; Robert B. Tesh; Slobodan Paessler; Willi K. Born; Rebecca L. O'Brien; Tian Wang
The Vγ4(+) cells, a subpopulation of peripheral γδ T cells, are involved in West Nile virus (WNV) pathogenesis, but the underlying mechanism remains unclear. In this study, we found that WNV-infected Vγ4(+) cell-depleted mice had lower viremia and a reduced inflammatory response in the brain. The Vγ4(+) cells produced IL-17 during WNV infection, but blocking IL-17 signaling did not affect host susceptibility to WNV encephalitis. We also noted that there was an enhanced magnitude of protective splenic Vγ1(+) cell expansion in Vγ4(+) cell-depleted mice compared to that in controls during WNV infection. In addition, Vγ4(+) cells of WNV-infected mice had a higher potential for producing TGF-β. The γδ T cells of WNV-infected Vγ4(+) cell-depleted mice had a higher proliferation rate than those of WNV-infected controls upon ex vivo stimulation with anti-CD3, and this difference was diminished in the presence of TGF-β inhibitor. Finally, Vγ4(+) cells of infected mice contributed directly and indirectly to the higher level of IL-10, which is known to play a negative role in immunity against WNV infection. In summary, Vγ4(+) cells suppress Vγ1(+) cell expansion via TGF-β and increase IL-10 level during WNV infection, which together may lead to higher viremia and enhanced brain inflammation.
Journal of Clinical Microbiology | 2014
Meagan F. Vaughn; Josie Delisle; Joey Johnson; Gaylen Daves; Carl Williams; Jodi Reber; Nicole L. Mendell; Donald H. Bouyer; William L. Nicholson; Abelardo C. Moncayo; Steven R. Meshnick
ABSTRACT Increasing entomologic and epidemiologic evidence suggests that spotted fever group rickettsiae (SFGR) other than Rickettsia rickettsii are responsible for spotted fever rickettsioses in the United States. A retrospective seroepidemiologic study was conducted on stored acute- and convalescent-phase sera that had been submitted for Rocky Mountain spotted fever testing to the North Carolina State Laboratory of Public Health. We evaluated the serologic reactivity of the paired sera to R. rickettsii, Rickettsia parkeri, and Rickettsia amblyommii antigens. Of the 106 eligible pairs tested, 21 patients seroconverted to one or more antigens. Cross-reactivity to multiple antigens was observed in 10 patients, and seroconversions to single antigens occurred in 11 patients, including 1 against R. rickettsii, 4 against R. parkeri, and 6 against R. amblyommii. Cross-absorption of cross-reactive sera and/or Western blots identified two presumptive cases of infection with R. parkeri, two presumptive cases of infection with R. rickettsii, and one presumptive case of infection with R. amblyommii. These findings suggest that species of SFGR other than R. rickettsii are associated with illness among North Carolina residents and that serologic testing using R. rickettsii antigen may miss cases of spotted fever rickettsioses caused by other species of SFGR.
PLOS Neglected Tropical Diseases | 2014
Thomas R. Shelite; Tais B. Saito; Nicole L. Mendell; Bin Gong; Guang Xu; Lynn Soong; Gustavo Valbuena; Donald H. Bouyer; David H. Walker
Orientia tsutsugamushi, the etiologic agent of scrub typhus, is a mite-borne rickettsia transmitted by the parasitic larval stage of trombiculid mites. Approximately one-third of the worlds population is at risk of infection with Orientia tsutsugamushi, emphasizing its importance in global health. In order to study scrub typhus, Orientia tsutsugamushi Karp strain has been used extensively in mouse studies with various inoculation strategies and little success in inducing disease progression similar to that of human scrub typhus. The objective of this project was to develop a disease model with pathology and target cells similar to those of severe human scrub typhus. This study reports an intravenous infection model of scrub typhus in C57BL/6 mice. This mouse strain was susceptible to intravenous challenge, and lethal infection occurred after intravenous inoculation of 1.25×106 focus (FFU) forming units. Signs of illness in lethally infected mice appeared on day 6 with death occurring ∼6 days later. Immunohistochemical staining for Orientia antigens demonstrated extensive endothelial infection, most notably in the lungs and brain. Histopathological analysis revealed cerebral perivascular, lymphohistiocytic infiltrates, focal hemorrhages, meningoencephalitis, and interstitial pneumonia. Disseminated infection of endothelial cells with Orientia in C57BL/6 mice resulted in pathology resembling that of human scrub typhus. The use of this model will allow detailed characterization of the mechanisms of immunity to and pathogenesis of O. tsutsugamushi infection.
PLOS Neglected Tropical Diseases | 2014
Lynn Soong; Hui Wang; Thomas R. Shelite; Yuejin Liang; Nicole L. Mendell; J. Sun; Bin Gong; Gustavo Valbuena; Donald H. Bouyer; David H. Walker
Scrub typhus is a neglected, but important, tropical disease, which puts one-third of the worlds population at risk. The disease is caused by Orientia tsutsugamushi, an obligately intracellular Gram-negative bacterium. Dysregulation in immune responses is known to contribute to disease pathogenesis; however, the nature and molecular basis of immune alterations are poorly defined. This study made use of a newly developed murine model of severe scrub typhus and focused on innate regulators and vascular growth factors in O. tsutsugamushi-infected liver, lungs and spleen. We found no activation or even reduction in base-line expression for multiple molecules (IL-7, IL-4, IL-13, GATA3, ROR-γt, and CXCL12) at 2, 6 and 10 days post-infection. This selective impairment in type 2-related immune responses correlated with a significant activation of the genes for IL-1β, IL-6, IL-10, TNF-α, IFN-γ, as well as CXCR3- and CXCR1-related chemokines in inflamed tissues. The elevated angiopoietin (Ang)-2 expression and Ang-2/Ang-1 ratios suggested excessive inflammation and the loss of endothelial integrity. These alterations, together with extensive recruitment of myeloperoxidase (MPO)-expressing neutrophils and the influx of CD3+ T cells, contributed to acute tissue damage and animal death. This is the first report of selective alterations in a panel of immune regulators during early O. tsutsugamushi infection in intravenously inoculated C57BL/6 mice. Our findings shed new light on the pathogenic mechanisms associated with severe scrub typhus and suggest potential targets for therapeutic investigation.
American Journal of Tropical Medicine and Hygiene | 2016
Josie Delisle; Nicole L. Mendell; Annica Stull-Lane; Karen C. Bloch; Donald H. Bouyer; Abelardo C. Moncayo
Rocky Mountain spotted fever is the most common tick-borne disease in Tennessee. However, Rickettsia rickettsii has rarely been isolated from endemic ticks, suggesting rickettsioses may be caused by other species. A total of 56 human serum samples that were serologically positive for exposure to Rickettsia were obtained from commercial laboratories in 2010 and 2011. In addition, 20 paired sera from patients with encephalitis and positive Rickettsia serology were obtained from the Tennessee Unexplained Encephalitis Surveillance (TUES) study. Using an immunofluorescence assay, reactivity of the sera to R. rickettsii, Rickettsia montanensis, Rickettsia parkeri, and Rickettsia amblyommii was tested, and a comparison of endpoint titers was used to determine the probable antigen that stimulated the antibody response. Cross-absorption was conducted for 94.8% (N = 91) of the samples due to serologic cross-reactivity. Of the commercial laboratory samples, 55.4% (N = 31) had specific reactivity to R. amblyommii and 44.6% (N = 25) were indeterminate. Of the paired TUES samples, 20% (N = 4) had specific reactivity to R. amblyommii, 5% (N = 1) to R. montanensis, and 5% (N = 1) to R. parkeri Patients with specific reactivity to R. amblyommii experienced fever (75%), headache (68%) and myalgia (58%). Rash (36%) and thrombocytopenia (40%) were less common. To our knowledge, this is the first time R. amblyommii has been reported as a possible causative agent of rickettsioses in Tennessee.
PLOS ONE | 2012
Lijun Xin; Thomas R. Shelite; Bin Gong; Nicole L. Mendell; Lynn Soong; Rong Fang; David H. Walker
Due to its strong immune stimulatory effects through TLR9, CpG-containing oligodeoxynucleotides (CpG ODN) have been tested in multiple clinical trials as vaccine adjuvant for infectious diseases and cancer. However, immune suppression induced by systemic administration of CpGs has been reported recently. In this study, we evaluated the impact of CpGs in an acute rickettsiosis model. We found that systemic treatment with type B CpG (CpG-B), but not type A CpG (CpG-A), at 2 days after sublethal R. australis infection induced mouse death. Although wild-type (WT) B6 and IDO−/− mice showed similar survival rates with three different doses of R. australis infection, treatment with CpG-B after sublethal infection consistently induced higher mortality with greater tissue bacterial loads in WT but not IDO−/− mice. Also, CpG-B treatment promoted the development of higher serum concentrations of proinflammatory cytokines/chemokines through IDO. Furthermore, while T cell-mediated immune responses enhanced by CpG-B were independent of IDO, treatment with CpG-B promoted T cell activation, PD-1 expression and cell apoptosis partially through IDO. A depletion study using anti-mPDCA-1 mAb indicated that plasmacytoid dendritic cells (pDC) were not required for CpG-B-induced death of R. australis-infected mice. Additionally, the results in iNOS−/− mice suggested that nitric oxide (NO) was partially involved in CpG-B-induced death of R. australis-infected mice. Surprisingly, pre-treatment with CpG-B before administration of a lethal dose of R. australis provided effective immunity in WT, IDO−/− and iNOS−/− mice. Taken together, our study provides evidence that CpGs exert complex immunological effects by both IDO-dependent and -independent mechanisms, and that systemic treatment with CpGs before or after infection has a significant and distinct impact on disease outcomes.
PLOS Neglected Tropical Diseases | 2016
Thomas R. Shelite; Yuejin Liang; Hui Wang; Nicole L. Mendell; Brandon J. Trent; J. Sun; Bin Gong; Guang Xu; Haitao Hu; Donald H. Bouyer; Lynn Soong
Endothelial cells (EC) are the main target for Orientia tsutsugamushi infection and EC dysfunction is a hallmark of severe scrub typhus in patients. However, the molecular basis of EC dysfunction and its impact on infection outcome are poorly understood. We found that C57BL/6 mice that received a lethal dose of O. tsutsugamushi Karp strain had a significant increase in the expression of IL-33 and its receptor ST2L in the kidneys and liver, but a rapid reduction of IL-33 in the lungs. We also found exacerbated EC stress and activation in the kidneys of infected mice, as evidenced by elevated angiopoietin (Ang) 2/Ang1 ratio, increased endothelin 1 (ET-1) and endothelial nitric oxide synthase (eNOS) expression. Such responses were significantly attenuated in the IL-33-/- mice. Importantly, IL-33-/- mice also had markedly attenuated disease due to reduced EC stress and cellular apoptosis. To confirm the biological role of IL-33, we challenged wild-type (WT) mice with a sub-lethal dose of O. tsutsugamushi and gave mice recombinant IL-33 (rIL-33) every 2 days for 10 days. Exogenous IL-33 significantly increased disease severity and lethality, which correlated with increased EC stress and activation, increased CXCL1 and CXCL2 chemokines, but decreased anti-apoptotic gene BCL-2 in the kidneys. To further examine the role of EC stress, we infected human umbilical vein endothelial cells (HUVEC) in vitro. We found an infection dose-dependent increase in the expression of IL-33, ST2L soluble ST2 (sST2), and the Ang2/Ang1 ratio at 24 and 48 hours post-infection. This study indicates a pathogenic role of alarmin IL-33 in a murine model of scrub typhus and highlights infection-triggered EC damage and IL-33-mediated pathological changes during the course of Orientia infection.
PLOS Neglected Tropical Diseases | 2016
Lynn Soong; Nicole L. Mendell; Juan P. Olano; Dedeke Rockx-Brouwer; Guang Xu; Yenny Goez-Rivillas; Claire Drom; Thomas R. Shelite; Gustavo Valbuena; David H. Walker; Donald H. Bouyer
Scrub typhus is a neglected tropical disease, caused by Orientia tsutsugamushi, a Gram-negative bacterium that is transmitted to mammalian hosts during feeding by Leptotrombidium mites and replicates predominantly within endothelial cells. Most studies of scrub typhus in animal models have utilized either intraperitoneal or intravenous inoculation; however, there is limited information on infection by the natural route in murine model skin or its related early host responses. Here, we developed an intradermal (i.d.) inoculation model of scrub typhus and focused on the kinetics of the host responses in the blood and major infected organs. Following ear inoculation with 6 x 104 O. tsutsugamushi, mice developed fever at 11–12 days post-infection (dpi), followed by marked hypothermia and body weight loss at 14–19 dpi. Bacteria in blood and tissues and histopathological changes were detected around 9 dpi and peaked around 14 dpi. Serum cytokine analyses revealed a mixed Th1/Th2 response, with marked elevations of MCP-1/CCL2, MIP-1α/CCL3 and IL-10 at 9 dpi, followed by increased concentrations of pro-inflammatory markers (IL-6, IL-12, IFN-γ, G-CSF, RANTES/CCL5, KC/CCL11, IL-1α/β, IL-2, TNF-α, GM-CSF), as well as modulatory cytokines (IL-9, IL-13). Cytokine levels in lungs had similar elevation patterns, except for a marked reduction of IL-9. The Orientia 47-kDa gene and infectious bacteria were detected in several organs for up to 84 dpi, indicating persistent infection. This is the first comprehensive report of acute scrub typhus and persistent infection in i.d.-inoculated C57BL/6 mice. This is a significant improvement over current murine models for Orientia infection and will permit detailed studies of host immune responses and infection control interventions.
PLOS Neglected Tropical Diseases | 2017
Guang Xu; Nicole L. Mendell; Yuejin Liang; Thomas R. Shelite; Yenny Goez-Rivillas; Lynn Soong; Donald H. Bouyer; David H. Walker
Scrub typhus, caused by a Gram-negative obligately intracellular coccobacillus, Orientia tsutsugamushi, is a long neglected but important tropical disease. Orientia tsutsugamushi causes illness in one million people each year, and 1 billion people are at risk. Without appropriate diagnosis and treatment, the disease can cause severe multiorgan failure with a case fatality rate of 7–15%. The current gaps in knowledge of immunity include the unknown mechanisms of host immunity to O. tsutsugamushi. Using an intravenous (i.v.) disseminated infection mouse model, we observed that more CD8+ T cells than CD4+ T cells were present in the spleen of infected mice at 12 dpi. We also determined that Treg cells and the proportion of T cells producing IL-10 were significantly increased from 6 dpi, which correlated with the onset of illness, body weight loss, and increased bacterial loads. We further studied CD8-/-, MHC I-/- and wild type control (WT) C57BL/6J mice to determine the importance of CD8+ T cells and MHC I molecules. After infection with an ordinarily sub-lethal dose of O. tsutsugamushi, all CD8-/- and MHC I-/- mice were moribund between 12 and 15 dpi, whereas all WT mice survived. Bacterial loads in the lung, kidney, liver and spleen of CD8-/- and MHC I-/- mice were significantly greater than those in WT mice. Interferon-γ (IFN-γ) and granzyme B mRNA levels in the liver of CD8-/- and MHC I-/- mice were significantly greater than in WT mice. In addition, more severe histopathologic lesions were observed in CD8-/- mice. Finally, adoptive transfer confirmed a major role of immune CD8+ T cells as well as a less effective contribution by immune CD8 T cell-depleted splenocytes in protection against O. tsutsugamushi infection. These studies demonstrated the critical importance of CD8+ T cells in the host immune response during O. tsutsugamushi infection.