Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nicole L. Yates is active.

Publication


Featured researches published by Nicole L. Yates.


The New England Journal of Medicine | 2012

Immune-Correlates Analysis of an HIV-1 Vaccine Efficacy Trial

Barton F. Haynes; Peter B. Gilbert; M. Juliana McElrath; Susan Zolla-Pazner; Georgia D. Tomaras; S. Munir Alam; David T. Evans; David C. Montefiori; Chitraporn Karnasuta; Ruengpueng Sutthent; Hua-Xin Liao; Anthony L. DeVico; George K. Lewis; Constance Williams; Abraham Pinter; Youyi Fong; Holly Janes; Allan C. deCamp; Yunda Huang; Mangala Rao; Erik Billings; Nicos Karasavvas; Merlin L. Robb; Viseth Ngauy; Mark S. de Souza; Robert Paris; Guido Ferrari; Robert T. Bailer; Kelly A. Soderberg; Charla Andrews

BACKGROUND In the RV144 trial, the estimated efficacy of a vaccine regimen against human immunodeficiency virus type 1 (HIV-1) was 31.2%. We performed a case-control analysis to identify antibody and cellular immune correlates of infection risk. METHODS In pilot studies conducted with RV144 blood samples, 17 antibody or cellular assays met prespecified criteria, of which 6 were chosen for primary analysis to determine the roles of T-cell, IgG antibody, and IgA antibody responses in the modulation of infection risk. Assays were performed on samples from 41 vaccinees who became infected and 205 uninfected vaccinees, obtained 2 weeks after final immunization, to evaluate whether immune-response variables predicted HIV-1 infection through 42 months of follow-up. RESULTS Of six primary variables, two correlated significantly with infection risk: the binding of IgG antibodies to variable regions 1 and 2 (V1V2) of HIV-1 envelope proteins (Env) correlated inversely with the rate of HIV-1 infection (estimated odds ratio, 0.57 per 1-SD increase; P=0.02; q=0.08), and the binding of plasma IgA antibodies to Env correlated directly with the rate of infection (estimated odds ratio, 1.54 per 1-SD increase; P=0.03; q=0.08). Neither low levels of V1V2 antibodies nor high levels of Env-specific IgA antibodies were associated with higher rates of infection than were found in the placebo group. Secondary analyses suggested that Env-specific IgA antibodies may mitigate the effects of potentially protective antibodies. CONCLUSIONS This immune-correlates study generated the hypotheses that V1V2 antibodies may have contributed to protection against HIV-1 infection, whereas high levels of Env-specific IgA antibodies may have mitigated the effects of protective antibodies. Vaccines that are designed to induce higher levels of V1V2 antibodies and lower levels of Env-specific IgA antibodies than are induced by the RV144 vaccine may have improved efficacy against HIV-1 infection.


Journal of Virology | 2008

Initial B-Cell Responses to Transmitted Human Immunodeficiency Virus Type 1: Virion-Binding Immunoglobulin M (IgM) and IgG Antibodies Followed by Plasma Anti-gp41 Antibodies with Ineffective Control of Initial Viremia

Georgia D. Tomaras; Nicole L. Yates; Pinghuang Liu; Li Qin; Genevieve G. Fouda; Leslie L. Chavez; Allan C. deCamp; Robert Parks; Vicki C Ashley; Judith T. Lucas; Myron S. Cohen; Joseph J. Eron; Charles B. Hicks; Hua-Xin Liao; Steven G. Self; Gary Landucci; Donald N. Forthal; Kent J. Weinhold; Brandon F. Keele; Beatrice H. Hahn; Michael L. Greenberg; Lynn Morris; Salim Safurdeen. Abdool Karim; William A. Blattner; David C. Montefiori; George M. Shaw; Alan S. Perelson; Barton F. Haynes

ABSTRACT A window of opportunity for immune responses to extinguish human immunodeficiency virus type 1 (HIV-1) exists from the moment of transmission through establishment of the latent pool of HIV-1-infected cells. A critical time to study the initial immune responses to the transmitted/founder virus is the eclipse phase of HIV-1 infection (time from transmission to the first appearance of plasma virus), but, to date, this period has been logistically difficult to analyze. To probe B-cell responses immediately following HIV-1 transmission, we have determined envelope-specific antibody responses to autologous and consensus Envs in plasma donors from the United States for whom frequent plasma samples were available at time points immediately before, during, and after HIV-1 plasma viral load (VL) ramp-up in acute infection, and we have modeled the antibody effect on the kinetics of plasma viremia. The first detectable B-cell response was in the form of immune complexes 8 days after plasma virus detection, whereas the first free plasma anti-HIV-1 antibody was to gp41 and appeared 13 days after the appearance of plasma virus. In contrast, envelope gp120-specific antibodies were delayed an additional 14 days. Mathematical modeling of the earliest viral dynamics was performed to determine the impact of antibody on HIV replication in vivo as assessed by plasma VL. Including the initial anti-gp41 immunoglobulin G (IgG), IgM, or both responses in the model did not significantly impact the early dynamics of plasma VL. These results demonstrate that the first IgM and IgG antibodies induced by transmitted HIV-1 are capable of binding virions but have little impact on acute-phase viremia at the timing and magnitude that they occur in natural infection.


AIDS | 2009

Heterogeneous neutralizing antibody and antibody-dependent cell cytotoxicity responses in HIV-1 elite controllers.

Olivier Lambotte; Guido Ferrari; Christiane Moog; Nicole L. Yates; Hua-Xin Liao; Robert Parks; Charles B. Hicks; Kouros Owzar; Georgia D. Tomaras; David C. Montefiori; Barton F. Haynes; Jean-François Delfraissy

Objective:To determine the spectrum of antiviral antibodies in HIV-1-infected individuals in whom viral replication is spontaneously undetectable, termed HIV controllers (HICs). Design:Multicenter French trial ANRS EP36 studying the viral control in HICs. Methods:Neutralizing Antibody (nAb) activities (neutralization assay, competition with broadly reactive monoclonal antibodies, and reactivity against the viral MPER gp41 region), FcγR-mediated antiviral activities, antibody-dependent cell cytotoxicity (ADCC), as well as autoantibody levels, were quantified in plasma from 22 controllers and from viremic individuals. The levels of these different antibody responses and HIV-specific CD8 T cell responses quantified by enzyme-linked immunosorbent spot (ELISPOT) IFNγ assay were compared in each controller. Results:The levels of antibody against the gp120 CD4 binding site, gp41, as well as Env epitopes near to the sites bound by broadly nAbs 2F5 and 1b12 were not different between HICs and viremic individuals. We did not find significant autoantibody levels in HICs. The magnitude and breadth of nAbs were heterogeneous in HICs but lower than in viremic individuals. The levels of nAbs using FcγR-mediated assay inhibition were similar in both groups. Regardless of the type of antibody tested, there was no correlation with HIV-specific CD8 T cell responses. ADCC was detectable in all controllers tested and was significantly higher than in viremic individuals (P < 0.0002). Conclusion:There was no single anti-HIV-1 antibody specificity that was a clear correlate of immunity in controllers. Rather, for most antibody types, controllers had the same or lower levels of nAbs than viremic individuals, with the possible exception of ADCC antibodies.


Science Translational Medicine | 2014

Vaccine-Induced Env V1–V2 IgG3 Correlates with Lower HIV-1 Infection Risk and Declines Soon After Vaccination

Nicole L. Yates; Hua-Xin Liao; Youyi Fong; Allan C. deCamp; Nathan Vandergrift; William T. Williams; S. Munir Alam; Guido Ferrari; Zhi-Yong Yang; Kelly E. Seaton; Phillip W. Berman; Michael D. Alpert; David T. Evans; Robert J. O’Connell; Donald P. Francis; Faruk Sinangil; Carter Lee; Sorachai Nitayaphan; Supachai Rerks-Ngarm; Jaranit Kaewkungwal; Punnee Pitisuttithum; James Tartaglia; Abraham Pinter; Susan Zolla-Pazner; Peter B. Gilbert; Gary J. Nabel; Nelson L. Michael; Jerome H. Kim; David C. Montefiori; Barton F. Haynes

A V1-V2 IgG3 response to HIV correlates with a decreased risk of HIV-1 infection and is one vaccine-induced humoral response that is higher in a clinical trial showing HIV-1 vaccine efficacy compared to a trial showing nonefficacy. Env IgG3 Takes Center Stage Only one HIV-1 vaccine trial (RV144), to date, has demonstrated some level of vaccine efficacy. IgG antibodies to the V1-V2 region of the HIV-1 envelope correlated with decreased HIV-1 risk. However, a previous vaccine trial (VAX003) also induced these types of antibodies but failed to demonstrate efficacy, thus raising the question about whether the quality of the V1-V2 IgG response and the context of other immune responses were important. Yates et al. report that these two trials did induce a qualitatively distinct antibody subclass response, with more V1V2 IgG3 responses and correlations with antiviral function induced by the partially efficacious RV144 vaccine regimen compared to the VAX003 vaccine regimen that lacks efficacy. The authors then demonstrated that these specific IgG3 antibodies correlated with a decreased risk of infection in a placebo-controlled, blinded study of RV144 vaccinees with and without subsequent HIV-1 infection. Vaccine-induced HIV-1 antibody subclass profiles, specifically Env IgG3, should be evaluated in future HIV-1 vaccine efficacy trials to further refine immune correlates of protection. HIV-1–specific immunoglobulin G (IgG) subclass antibodies bind to distinct cellular Fc receptors. Antibodies of the same epitope specificity but of a different subclass therefore can have different antibody effector functions. The study of IgG subclass profiles between different vaccine regimens used in clinical trials with divergent efficacy outcomes can provide information on the quality of the vaccine-induced B cell response. We show that HIV-1–specific IgG3 distinguished two HIV-1 vaccine efficacy studies (RV144 and VAX003 clinical trials) and correlated with decreased risk of HIV-1 infection in a blinded follow-up case-control study with the RV144 vaccine. HIV-1–specific IgG3 responses were not long-lived, which was consistent with the waning efficacy of the RV144 vaccine. These data suggest that specific vaccine-induced HIV-1 IgG3 should be tested in future studies of immune correlates in HIV-1 vaccine efficacy trials.


PLOS ONE | 2014

Vaccine-Induced IgG Antibodies to V1V2 Regions of Multiple HIV-1 Subtypes Correlate with Decreased Risk of HIV-1 Infection

Susan Zolla-Pazner; Allan C. deCamp; Peter B. Gilbert; Constance Williams; Nicole L. Yates; William T. Williams; Robert Howington; Youyi Fong; Daryl Morris; Kelly A. Soderberg; Carmela Irene; Charles Reichman; Abraham Pinter; Robert Parks; Punnee Pitisuttithum; Jaranit Kaewkungwal; Supachai Rerks-Ngarm; Sorachai Nitayaphan; Charla Andrews; Robert J. O'Connell; Zhi Yong Yang; Gary J. Nabel; Jerome H. Kim; Nelson L. Michael; David C. Montefiori; Hua-Xin Liao; Barton F. Haynes; Georgia D. Tomaras

In the RV144 HIV-1 vaccine efficacy trial, IgG antibody (Ab) binding levels to variable regions 1 and 2 (V1V2) of the HIV-1 envelope glycoprotein gp120 were an inverse correlate of risk of HIV-1 infection. To determine if V1V2-specific Abs cross-react with V1V2 from different HIV-1 subtypes, if the nature of the V1V2 antigen used to asses cross-reactivity influenced infection risk, and to identify immune assays for upcoming HIV-1 vaccine efficacy trials, new V1V2-scaffold antigens were designed and tested. Protein scaffold antigens carrying the V1V2 regions from HIV-1 subtypes A, B, C, D or CRF01_AE were assayed in pilot studies, and six were selected to assess cross-reactive Abs in the plasma from the original RV144 case-control cohort (41 infected vaccinees, 205 frequency-matched uninfected vaccinees, and 40 placebo recipients) using ELISA and a binding Ab multiplex assay. IgG levels to these antigens were assessed as correlates of risk in vaccine recipients using weighted logistic regression models. Levels of Abs reactive with subtype A, B, C and CRF01_AE V1V2-scaffold antigens were all significant inverse correlates of risk (p-values of 0.0008–0.05; estimated odds ratios of 0.53–0.68 per 1 standard deviation increase). Thus, levels of vaccine-induced IgG Abs recognizing V1V2 regions from multiple HIV-1 subtypes, and presented on different scaffolds, constitute inverse correlates of risk for HIV-1 infection in the RV144 vaccine trial. The V1V2 antigens provide a link between RV144 and upcoming HIV-1 vaccine trials, and identify reagents and methods for evaluating V1V2 Abs as possible correlates of protection against HIV-1 infection. Trial Registration ClinicalTrials.gov NCT00223080


Journal of Virology | 2011

Polyclonal B Cell Responses to Conserved Neutralization Epitopes in a Subset of HIV-1-infected Individuals

Georgia D. Tomaras; James M. Binley; Elin S. Gray; Emma T. Crooks; Keiko Osawa; Penny L. Moore; Nancy Tumba; Tommy Tong; Xiaoying Shen; Nicole L. Yates; Julie M. Decker; Constantinos Kurt Wibmer; Feng Gao; S. Munir Alam; Philippa Easterbrook; Salim Safurdeen. Abdool Karim; Gift Kamanga; John A. Crump; Myron S. Cohen; George M. Shaw; John R. Mascola; Barton F. Haynes; David C. Montefiori; Lynn Morris

ABSTRACT A small proportion of HIV-infected individuals generate a neutralizing antibody (NAb) response of exceptional magnitude and breadth. A detailed analysis of the critical epitopes targeted by broadly neutralizing antibodies should help to define optimal targets for vaccine design. HIV-1-infected subjects with potent cross-reactive serum neutralizing antibodies were identified by assaying sera from 308 subjects against a multiclade panel of 12 “tier 2” viruses (4 each of subtypes A, B, and C). Various neutralizing epitope specificities were determined for the top 9 neutralizers, including clade A-, clade B-, clade C-, and clade A/C-infected donors, by using a comprehensive set of assays. In some subjects, neutralization breadth was mediated by two or more antibody specificities. Although antibodies to the gp41 membrane-proximal external region (MPER) were identified in some subjects, the subjects with the greatest neutralization breadth targeted gp120 epitopes, including the CD4 binding site, a glycan-containing quaternary epitope formed by the V2 and V3 loops, or an outer domain epitope containing a glycan at residue N332. The broadly reactive HIV-1 neutralization observed in some subjects is mediated by antibodies targeting several conserved regions on the HIV-1 envelope glycoprotein.


Journal of Virology | 2012

HIV-1 gp120 Vaccine Induces Affinity Maturation in both New and Persistent Antibody Clonal Lineages

Ma Moody; Nicole L. Yates; Joshua D. Amos; Mark Drinker; Joshua Eudailey; Thaddeus C. Gurley; Dawn J. Marshall; John F. Whitesides; Xi Chen; Andrew Foulger; Jae-Sung Yu; Ruijun Zhang; R. Ryan Meyerhoff; Robert Parks; J. C. Scull; Liuyang Wang; Nathan Vandergrift; Joy Pickeral; Justin Pollara; Garnett Kelsoe; S. M. Alam; Guido Ferrari; David C. Montefiori; Gerald Voss; Hua-Xin Liao; Georgia D. Tomaras; Barton F. Haynes

ABSTRACT Most antibodies that broadly neutralize HIV-1 are highly somatically mutated in antibody clonal lineages that persist over time. Here, we describe the analysis of human antibodies induced during an HIV-1 vaccine trial (GSK PRO HIV-002) that used the clade B envelope (Env) gp120 of clone W6.1D (gp120W6.1D). Using dual-color antigen-specific sorting, we isolated Env-specific human monoclonal antibodies (MAbs) and studied the clonal persistence of antibodies in the setting of HIV-1 Env vaccination. We found evidence of VH somatic mutation induced by the vaccine but only to a modest level (3.8% ± 0.5%; range 0 to 8.2%). Analysis of 34 HIV-1-reactive MAbs recovered over four immunizations revealed evidence of both sequential recruitment of naïve B cells and restimulation of previously recruited memory B cells. These recombinant antibodies recapitulated the anti-HIV-1 activity of participant serum including pseudovirus neutralization and antibody-dependent cell-mediated cytotoxicity (ADCC). One antibody (3491) demonstrated a change in specificity following somatic mutation with binding of the inferred unmutated ancestor to a linear C2 peptide while the mutated antibody reacted only with a conformational epitope in gp120 Env. Thus, gp120W6.1D was strongly immunogenic but over four immunizations induced levels of affinity maturation below that of broadly neutralizing MAbs. Improved vaccination strategies will be needed to drive persistent stimulation of antibody clonal lineages to induce affinity maturation that results in highly mutated HIV-1 Env-reactive antibodies.


Journal of Virology | 2013

Antigenicity and Immunogenicity of RV144 Vaccine AIDSVAX Clade E Envelope Immunogen Is Enhanced by a gp120 N-Terminal Deletion

S. Munir Alam; Hua-Xin Liao; Georgia D. Tomaras; Mattia Bonsignori; Chun-Yen Tsao; Kwan-Ki Hwang; Haiyan Chen; Krissey E. Lloyd; Cindy M. Bowman; Laura L. Sutherland; Thomas L. Jeffries; Daniel M. Kozink; Shelley Stewart; Kara Anasti; Frederick H. Jaeger; Robert Parks; Nicole L. Yates; R. Glenn Overman; Faruk Sinangil; Phillip W. Berman; Punnee Pitisuttithum; Jaranit Kaewkungwal; Sorachai Nitayaphan; Nicos Karasavva; Supachai Rerks-Ngarm; Jerome H. Kim; Nelson L. Michael; Susan Zolla-Pazner; Sampa Santra; Norman L. Letvin

ABSTRACT An immune correlates analysis of the RV144 HIV-1 vaccine trial revealed that antibody responses to the gp120 V1/V2 region correlated inversely with infection risk. The RV144 protein immunogens (A244-rp120 and MN-rgp120) were modified by an N-terminal 11-amino-acid deletion (Δ11) and addition of a herpes simplex virus (HSV) gD protein-derived tag (gD). We investigated the effects of these modifications on gp120 expression, antigenicity, and immunogenicity by comparing unmodified A244 gp120 with both Δ11 deletion and gD tag and with Δ11 only. Analysis of A244 gp120, with or without Δ11 or gD, demonstrated that the Δ11 deletion, without the addition of gD, was sufficient for enhanced antigenicity to gp120 C1 region, conformational V2, and V1/V2 gp120 conformational epitopes. RV144 vaccinee serum IgGs bound more avidly to A244 gp120 Δ11 than to the unmodified gp120, and their binding was blocked by C1, V2, and V1/V2 antibodies. Rhesus macaques immunized with the three different forms of A244 gp120 proteins gave similar levels of gp120 antibody titers, although higher antibody titers developed earlier in A244 Δ11 gp120-immunized animals. Conformational V1/V2 monoclonal antibodies (MAbs) gave significantly higher levels of blocking of plasma IgG from A244 Δ11 gp120-immunized animals than IgG from animals immunized with unmodified A244 gp120, thus indicating a qualitative difference in the V1/V2 antibodies induced by A244 Δ11 gp120. These results demonstrate that deletion of N-terminal residues in the RV144 A244 gp120 immunogen improves both envelope antigenicity and immunogenicity.


Mucosal Immunology | 2013

HIV-1 gp41 envelope IgA is frequently elicited after transmission but has an initial short response half-life

Nicole L. Yates; Andrea R. Stacey; Tracy L. Nolen; Nathan Vandergrift; Ma Moody; David C. Montefiori; Kent J. Weinhold; William A. Blattner; Persephone Borrow; Robin J. Shattock; Myron S. Cohen; Barton F. Haynes; Georgia D. Tomaras

Prevention of HIV-1 transmission at mucosal surfaces will likely require durable pre-existing mucosal anti-HIV-1 antibodies (Abs). Defining the ontogeny, specificities and potentially protective nature of the initial mucosal virus-specific B-cell response will be critical for understanding how to induce protective Ab responses by vaccination. Genital fluids from patients within the earliest stages of acute HIV-1 infection (Fiebig I–VI) were examined for multiple anti-HIV specificities. Gp41 (but not gp120) Env immunoglobulin (Ig)A Abs were frequently elicited in both plasma and mucosal fluids within the first weeks of transmission. However, shortly after induction, these initial mucosal gp41 Env IgA Abs rapidly declined with a t1/2 of ∼2.7 days. B-cell-activating factor belonging to the TNF family (BAFF) was elevated immediately preceding the appearance of gp41 Abs, likely contributing to an initial T-independent Ab response. HIV-1 transmission frequently elicits mucosal HIV-1 envelope-specific IgA responses targeted to gp41 that have a short half-life.


Journal of Virology | 2011

HIV-Specific Functional Antibody Responses in Breast Milk Mirror Those in Plasma and Are Primarily Mediated by IgG Antibodies

Genevieve G. Fouda; Nicole L. Yates; Justin Pollara; Xiaoying Shen; Glenn Overman; Tatenda Mahlokozera; Andrew B. Wilks; Helen H. Kang; Jesus F. Salazar-Gonzalez; Maria G. Salazar; Linda Kalilani; Steve Meshnick; Beatrice H. Hahn; George M. Shaw; Rachel V. Lovingood; Thomas N. Denny; Barton F. Haynes; Norman L. Letvin; Guido Ferrari; David C. Montefiori; Georgia D. Tomaras; Sallie R. Permar; Aids Vaccine Immunology

ABSTRACT Despite months of mucosal virus exposure, the majority of breastfed infants born to HIV-infected mothers do not become infected, raising the possibility that immune factors in milk inhibit mucosal transmission of HIV. HIV Envelope (Env)-specific antibodies are present in the milk of HIV-infected mothers, but little is known about their virus-specific functions. In this study, HIV Env-specific antibody binding, autologous and heterologous virus neutralization, and antibody-dependent cell cytotoxicity (ADCC) responses were measured in the milk and plasma of 41 HIV-infected lactating women. Although IgA is the predominant antibody isotype in milk, HIV Env-specific IgG responses were higher in magnitude than HIV Env-specific IgA responses in milk. The concentrations of anti-HIV gp120 IgG in milk and plasma were directly correlated (r = 0.75; P < 0.0001), yet the response in milk was 2 logarithm units lower than in plasma. Similarly, heterologous virus neutralization (r = 0.39; P = 0.010) and ADCC activity (r = 0.64; P < 0.0001) in milk were directly correlated with that in the systemic compartment but were 2 log units lower in magnitude. Autologous neutralization was rarely detected in milk. Milk heterologous virus neutralization titers correlated with HIV gp120 Env-binding IgG responses but not with IgA responses (r = 0.71 and P < 0.0001, and r = 0.17 and P = 0.30). Moreover, IgGs purified from milk and plasma had equal neutralizing potencies against a tier 1 virus (r = 0.65; P < 0.0001), whereas only 1 out of 35 tested non-IgG milk fractions had detectable neutralization. These results suggest that plasma-derived IgG antibodies mediate the majority of the low-level HIV neutralization and ADCC activity in breast milk.

Collaboration


Dive into the Nicole L. Yates's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guido Ferrari

Walter Reed Army Institute of Research

View shared research outputs
Top Co-Authors

Avatar

Hua-Xin Liao

University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Supachai Rerks-Ngarm

Thailand Ministry of Public Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge