Nicole R. Buan
University of Wisconsin-Madison
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nicole R. Buan.
Journal of Biological Chemistry | 2004
Eman Basha; Garrett J. Lee; Linda Breci; Andrew C. Hausrath; Nicole R. Buan; Kim C. Giese; Elizabeth Vierling
The small heat shock proteins (sHSPs) are a ubiquitous class of ATP-independent chaperones believed to prevent irreversible protein aggregation and to facilitate subsequent protein renaturation in cooperation with ATP-dependent chaperones. Although sHSP chaperone activity has been studied extensively in vitro, understanding the mechanism of sHSP function requires identification of proteins that are sHSP substrates in vivo. We have used both immunoprecipitation and affinity chromatography to recover 42 proteins that specifically interact with Synechocystis Hsp16.6 in vivo during heat treatment. These proteins can all be released from Hsp16.6 by the ATP-dependent activity of DnaK and co-chaperones and are heat-labile. Thirteen of the putative substrate proteins were identified by mass spectrometry and reveal the potential for sHSPs to protect cellular functions as diverse as transcription, translation, cell signaling, and secondary metabolism. One of the putative substrates, serine esterase, was purified and tested directly for interaction with purified Hsp16.6. Hsp16.6 effectively formed soluble complexes with serine esterase in a heat-dependent fashion, thereby preventing formation of insoluble serine esterase aggregates. These data offer critical insights into the characteristics of native sHSP substrates and extend and provide in vivo support for the chaperone model of sHSP function.
Journal of Bacteriology | 2004
Nicole R. Buan; Sang Jin Suh; Jorge C. Escalante-Semerena
The eutT gene of Salmonella enterica was cloned and overexpressed, and the function of its product was established in vivo and in vitro. The EutT protein has an oxygen-labile, metal-containing ATP:co(I)rrinoid adenosyltransferase activity associated with it. Functional redundancy between EutT and the housekeeping ATP:co(I)rrinoid adenosyltransferase CobA enzyme was demonstrated through phenotypic analyses of mutant strains. Lack of CobA and EutT blocked ethanolamine utilization. EutT was necessary and sufficient for growth of an S. enterica cobA eutT strain on ethanolamine as a carbon and energy or nitrogen source. A eutT+ gene provided in trans corrected the adenosylcobalamin-dependent transcription of a eut-lacZ operon fusion in a cobA strain. Cell extracts enriched for EutT protein contained strong, readily detectable ATP:co(I)rrinoid adenosyltransferase activity. The activity was only detected in extracts maintained under anoxic conditions, with complete loss of activity upon exposure to air or treatment with the Fe2+ ion chelator bathophenanthroline. While the involvement of another metal ion cannot be ruled out, the observed sensitivity to air and bathophenanthroline suggests involvement of Fe2+. We propose that the EutT protein is a unique metal-containing ATP:co(I)rrinoid adenosyltransferase. It is unclear whether the metal ion plays a structural or catalytic role.
Journal of Biological Chemistry | 2006
Nicole R. Buan; Jorge C. Escalante-Semerena
ATP:cob(I)alamin adenosyltransferase (EutT) of Salmonella enterica was overproduced and enriched to ∼70% homogeneity, and its basic kinetic parameters were determined. Abundant amounts of EutT protein were produced, but all of it remained insoluble. Soluble active EutT protein (∼70% homogeneous) was obtained after treatment with detergent. Under conditions in which cobalamin (Cbl) was saturating, Km(ATP) = 10 μm, kcat = 0.03 s–1, and Vmax = 54.5 nm min–1. Similarly, under conditions in which MgATP was saturating, Km(Cbl) = 4.1 μm, kcat = 0.06 s–1, and Vmax = 105 nm min–1. Unlike other ATP:co(I)rrinoid adenosyltransferases in the cell (i.e. CobA and PduO), EutT activity was ≥50-fold higher with ATP versus GTP, and EutT retained 80% of its activity with ADP substituted for ATP and was completely inactive with AMP as substrate, indicating that the enzyme requires the β-phosphate group of the nucleotide substrate. The data suggest that the amino group of adenine might play a role in nucleotide recognition and/or binding. Unlike the housekeeping CobA enzyme, EutT was not inhibited by inorganic tripolyphosphate (PPPi). Results from 31P NMR spectroscopy studies identified PPi and Pi as by-products of the EutT reaction. In the absence of Cbl, EutT cleaved ATP into adenosine and PPPi, suggesting that PPPi is broken down into PPi and Pi. Electron transfer protein partners for EutT were not encoded by the eut operon. EutT-dependent activity was detected in cell-free extracts of cobA strains enriched for EutT when FMN and NADH were used to reduce cob(III)alamin to cob(I)alamin.
Journal of Biological Chemistry | 2002
Maris V. Fonseca; Nicole R. Buan; Alexander R. Horswill; Ivan Rayment; Jorge C. Escalante-Semerena
The specificity of the ATP:corrinoid adenosyltransferase (CobA) enzyme of Salmonella entericaserovar Typhimurium LT2 for its nucleotide substrate was tested using ATP analogs and alternative nucleotide donors. The enzyme showed broad specificity for the nucleotide base and required the 2′-OH group of the ribosyl moiety of ATP for activity. 31P NMR spectroscopy was used to identify inorganic triphosphate (PPPi) as the byproduct of the reaction catalyzed by the CobA enzyme. Cleavage of triphosphate into pyrophosphate and orthophosphate did not occur, indicating that triphosphate cleavage was not required for release of the adenosylcorrinoid product. Triphosphate was a strong inhibitor of the reaction, with 85% of CobA activity lost when the ATP/PPPi ratio present in the reaction mixture was 1:2.5.
Journal of Biological Chemistry | 2005
Nicole R. Buan; Jorge C. Escalante-Semerena
The activity of the housekeeping ATP:co(I)rrinoid adenosyltransferase (CobA) enzyme of Salmonella enterica sv. Typhimurium is required to adenosylate de novo biosynthetic intermediates of adenosylcobalamin and to salvage incomplete and complete corrinoids from the environment of this bacterium. In vitro, reduced flavodoxin (FldA) provides an electron to generate the co(I)rrinoid substrate in the CobA active site. To understand how CobA and FldA interact, a computer model of a CobA·FldA complex was generated. This model was used to guide the introduction of mutations into CobA using site-directed mutagenesis and the synthesis of a peptide mimic of FldA. Residues Arg-9 and Arg-165 of CobA were critical for FldA-dependent adenosylation but were catalytically as competent as the wild-type protein when cob(I)alamin was provided as substrate. These results indicate that Arg-9 and Arg-165 are important for CobA·FldA docking but not to catalysis. A truncation of the 9-amino acid N-terminal helix of CobA reduced its FldA-dependent cobalamin adenosyltransferase activity by 97.4%. The same protein, however, had a 4-fold higher specific activity than the native enzyme when cob(I)alamin was generated chemically in situ.
Methods in Enzymology | 2011
Nicole R. Buan; Gargi Kulkarni; William W. Metcalf
Unlike most methanogenic microorganisms, Methanosarcina species are capable of utilizing a variety of growth substrates, a trait that greatly simplifies genetic analysis of the methanogenic process. The genetic tools and techniques discussed in this chapter form the basis for all genetic experiments in Methanosarcina acetivorans C2A and Methanosarcina barkeri Fusaro, two methanogens that are routinely used as model organisms for genetic experiments. Based on a number of reports, it is likely that they are portable to other Methanosarcina species, and perhaps to other methanogens as well. Here, we outline the procedures for high-efficiency transformation using liposomes, gene expression from a plasmid, and exploitation of homologous and site-specific recombination to add and delete genes from the chromosome. Finally, we outline the method for testing whether a gene is essential. These methods can be adapted and combined in any number of ways to design genetic experiments in Methanosarcina.
international workshop on signal processing advances in wireless communications | 2016
Massimiliano Pierobon; Zahmeeth Sakkaff; Jennie L. Catlett; Nicole R. Buan
Synthetic biology is providing novel tools to engineer cells and access the basis of their molecular information processing, including their communication channels based on chemical reactions and molecule exchange. Molecular communication is a discipline in communication engineering that studies these types of communications and ways to exploit them for novel purposes, such as the development of ubiquitous and heterogeneous communication networks to interconnect biological cells with nano and biotechnology-enabled devices, i.e., the Internet of Bio-Nano Things. One major problem in synthetic biology stands in the development of reliable techniques to control the engineered cells from the external environment. In this paper, molecular communication concepts are applied to study the potential of cell metabolism, and its regulation, to serve this purpose. In particular, a communication system abstraction is introduced to obtain a binary encoder model of the mechanisms underlying the regulation of the chemical reactions activity within the cell metabolism in function of the chemical composition of the external environment. Stemming from this model, an upper bound to the information theoretic mutual information is obtained through the use of a well-known and computationally efficient metabolic simulation technique. This upper bound stands as a theoretical limit of the ability of a particular cell to internally represent the information contained in the chemical composition of the external environment. Numerical results related to the metabolism of the E. coli bacterium are presented to evaluate the proposed approach.
Applied and Environmental Microbiology | 2015
Jennie L. Catlett; Alicia Ortiz; Nicole R. Buan
ABSTRACT Methanogens are anaerobic archaea that grow by producing methane, a gas that is both an efficient renewable fuel and a potent greenhouse gas. We observed that overexpression of the cytoplasmic heterodisulfide reductase enzyme HdrABC increased the rate of methane production from methanol by 30% without affecting the growth rate relative to the parent strain. Hdr enzymes are essential in all known methane-producing archaea. They function as the terminal oxidases in the methanogen electron transport system by reducing the coenzyme M (2-mercaptoethane sulfonate) and coenzyme B (7-mercaptoheptanoylthreonine sulfonate) heterodisulfide, CoM-S-S-CoB, to regenerate the thiol-coenzymes for reuse. In Methanosarcina acetivorans, HdrABC expression caused an increased rate of methanogenesis and a decrease in metabolic efficiency on methylotrophic substrates. When acetate was the sole carbon and energy source, neither deletion nor overexpression of HdrABC had an effect on growth or methane production rates. These results suggest that in cells grown on methylated substrates, the cell compensates for energy losses due to expression of HdrABC with an increased rate of substrate turnover and that HdrABC lacks the appropriate electron donor in acetate-grown cells.
PLOS ONE | 2014
Dillon J. Lieber; Jennifer Catlett; Nandu Madayiputhiya; Renu Nandakumar; Madeline M. Lopez; William W. Metcalf; Nicole R. Buan
Multienzyme complexes catalyze important metabolic reactions in many organisms, but little is known about the complexes involved in biological methane production (methanogenesis). A crosslinking-mass spectrometry (XL-MS) strategy was employed to identify proteins associated with coenzyme M-coenzyme B heterodisulfide reductase (Hdr), an essential enzyme in all methane-producing archaea (methanogens). In Methanosarcina acetivorans, Hdr forms a multienzyme complex with acetyl-CoA decarbonylase synthase (ACDS), and F420-dependent methylene-H4MPT reductase (Mer). ACDS is essential for production of acetyl-CoA during growth on methanol, or for methanogenesis from acetate, whereas Mer is essential for methanogenesis from all substrates. Existence of a Hdr:ACDS:Mer complex is consistent with growth phenotypes of ACDS and Mer mutant strains in which the complex samples the redox status of electron carriers and directs carbon flux to acetyl-CoA or methanogenesis. We propose the Hdr:ACDS:Mer complex comprises a special class of multienzyme redox complex which functions as a “biological router” that physically links methanogenesis and acetyl-CoA biosynthesis pathways.
international conference on nanoscale computing and communication | 2017
Zahmeeth Sakkaff; Jennie L. Catlett; Mikaela Cashman; Massimiliano Pierobon; Nicole R. Buan; Myra B. Cohen; Christine A. Kelley
The opportunity to control and fine-tune the behavior of biological cells is a fascinating possibility for many diverse disciplines, ranging from medicine and ecology, to chemical industry and space exploration. While synthetic biology is providing novel tools to reprogram cell behavior from their genetic code, many challenges need to be solved before it can become a true engineering discipline, such as reliability, safety assurance, reproducibility and stability. This paper aims to understand the limits in the controllability of the behavior of a natural (non-engineered) biological cell. In particular, the focus is on cell metabolism, and its natural regulation mechanisms, and their ability to react and change according to the chemical characteristics of the external environment. To understand the aforementioned limits of this ability, molecular communication is used to abstract biological cells into a series of channels that propagate information on the chemical composition of the extracellular environment to the cells behavior in terms of uptake and consumption of chemical compounds, and growth rate. This provides an information-theoretic framework to analyze the upper bound limit to the capacity of these channels to propagate information, which is based on a well-known and computationally efficient metabolic simulation technique. A numerical study is performed on two human gut microbes, where the upper bound is estimated for different environmental compounds, showing there is a potential for future practical applications.