Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nicoletta Corbi is active.

Publication


Featured researches published by Nicoletta Corbi.


PLOS ONE | 2009

Parp1 localizes within the Dnmt1 promoter and protects its unmethylated state by its enzymatic activity

Michele Zampieri; Claudio Passananti; Roberta Calabrese; Mariagrazia Perilli; Nicoletta Corbi; Fabiana De Cave; Tiziana Guastafierro; Maria Giulia Bacalini; Anna Reale; Gianfranco Amicosante; Lilia Calabrese; Jordanka Zlatanova; Paola Caiafa

Background Aberrant hypermethylation of CpG islands in housekeeping gene promoters and widespread genome hypomethylation are typical events occurring in cancer cells. The molecular mechanisms behind these cancer-related changes in DNA methylation patterns are not well understood. Two questions are particularly important: (i) how are CpG islands protected from methylation in normal cells, and how is this protection compromised in cancer cells, and (ii) how does the genome-wide demethylation in cancer cells occur. The latter question is especially intriguing since so far no DNA demethylase enzyme has been found. Methodology/Principal Findings Our data show that the absence of ADP-ribose polymers (PARs), caused by ectopic over-expression of poly(ADP-ribose) glycohydrolase (PARG) in L929 mouse fibroblast cells leads to aberrant methylation of the CpG island in the promoter of the Dnmt1 gene, which in turn shuts down its transcription. The transcriptional silencing of Dnmt1 may be responsible for the widespread passive hypomethylation of genomic DNA which we detect on the example of pericentromeric repeat sequences. Chromatin immunoprecipitation results show that in normal cells the Dnmt1 promoter is occupied by poly(ADP-ribosyl)ated Parp1, suggesting that PARylated Parp1 plays a role in protecting the promoter from methylation. Conclusions/Significance In conclusion, the genome methylation pattern following PARG over-expression mirrors the pattern characteristic of cancer cells, supporting our idea that the right balance between Parp/Parg activities maintains the DNA methylation patterns in normal cells. The finding that in normal cells Parp1 and ADP-ribose polymers localize on the Dnmt1 promoter raises the possibility that PARylated Parp1 marks those sequences in the genome that must remain unmethylated and protects them from methylation, thus playing a role in the epigenetic regulation of gene expression.


Cancer Cell | 2002

Che-1 affects cell growth by interfering with the recruitment of HDAC1 by Rb

Tiziana Bruno; Roberta De Angelis; Francesca De Nicola; Christian Barbato; Monica Di Padova; Nicoletta Corbi; Valentina Libri; Barbara Benassi; Elisabetta Mattei; Alberto Chersi; Silvia Soddu; Aristide Floridi; Claudio Passananti; Maurizio Fanciulli

DNA tumor virus oncoproteins bind and inactivate Rb by interfering with the Rb/HDAC1 interaction. Che-1 is a recently identified human Rb binding protein that inhibits the Rb growth suppressing function. Here we show that Che-1 contacts the Rb pocket region and competes with HDAC1 for Rb binding site, removing HDAC1 from the Rb/E2F complex in vitro and from the E2F target promoters in vivo. Che-1 overexpression activates DNA synthesis in quiescent NIH-3T3 cells through HDAC1 displacement. Consistently, Che-1-specific RNA interference affects E2F activity and cell proliferation in human fibroblasts but not in the pocket protein-defective 293 cells. These findings indicate the existence of a pathway of Rb regulation supporting Che-1 as the cellular counterpart of DNA tumor virus oncoproteins.


Journal of Cell Science | 2007

NRAGE associates with the anti-apoptotic factor Che-1 and regulates its degradation to induce cell death

Maria Grazia Di Certo; Nicoletta Corbi; Tiziana Bruno; Simona Iezzi; Francesca De Nicola; Agata Desantis; Maria Teresa Ciotti; Elisabetta Mattei; Aristide Floridi; Maurizio Fanciulli; Claudio Passananti

Neurotrophin receptor-interacting MAGE homolog (NRAGE) has been recently identified as a cell-death inducer, involved in molecular events driving cells through apoptotic networks during neuronal development. Recently, we have focused on the functional role of Che-1, also known as apoptosis-antagonizing transcription factor (AATF), a protein involved in cell cycle control and gene transcription. Increasing evidence suggests that Che-1 is involved in apoptotic signalling in neural tissues. In cortical neurons Che-1 exhibits an anti-apoptotic activity, protecting cells from neuronal damage induced by amyloid β-peptide. Here, we report that Che-1 interacts with NRAGE and that an EGFP-NRAGE fusion protein inhibits nuclear localization of Che-1, by sequestering it within the cytoplasmic compartment. Furthermore, NRAGE overexpression downregulates endogenous Che-1 by targeting it for proteasome-dependent degradation. Finally, we propose that Che-1 is a functional antagonist of NRAGE, because its overexpression completely reverts NRAGE-induced cell-death.


The Journal of Neuroscience | 2013

Nuclear Factor κB-Dependent Histone Acetylation is Specifically Involved in Persistent Forms of Memory

Noel Federman; V. de la Fuente; Gisela Zalcman; Nicoletta Corbi; A. Onori; Claudio Passananti; Arturo Romano

Memory consolidation requires gene expression regulation by transcription factors, which eventually may induce chromatin modifications as histone acetylation. This mechanism is regulated by histone acetylases and deacetylases. It is not yet clear whether memory consolidation always recruits histone acetylation or it is only engaged in more persistent memories. To address this question, we used different strength of training for novel object recognition task in mice. Only strong training induced a long-lasting memory and an increase in hippocampal histone H3 acetylation. Histone acetylase inhibition in the hippocampus during consolidation impaired memory persistence, whereas histone deacetylase inhibition caused weak memory to persist. Nuclear factor κB (NF-κB) transcription factor inhibition impaired memory persistence and, concomitantly, reduced the general level of H3 acetylation. Accordingly, we found an important increase in H3 acetylation at a specific NF-κB-regulated promoter region of the Camk2d gene, which was reversed by NF-kB inhibition. These results show for the first time that histone acetylation is a specific molecular signature of enduring memories.


PLOS ONE | 2007

Utrophin up-regulation by an artificial transcription factor in transgenic mice.

Elisabetta Mattei; Nicoletta Corbi; Maria Grazia Di Certo; Georgios Strimpakos; Cinzia Severini; Annalisa Onori; Agata Desantis; Valentina Libri; Serena Buontempo; Aristide Floridi; Maurizio Fanciulli; Dilair Baban; Kay E. Davies; Claudio Passananti

Duchenne Muscular Dystrophy (DMD) is a severe muscle degenerative disease, due to absence of dystrophin. There is currently no effective treatment for DMD. Our aim is to up-regulate the expression level of the dystrophin related gene utrophin in DMD, complementing in this way the lack of dystrophin functions. To this end we designed and engineered several synthetic zinc finger based transcription factors. In particular, we have previously shown that the artificial three zinc finger protein named Jazz, fused with the appropriate effector domain, is able to drive the transcription of a test gene from the utrophin promoter “A”. Here we report on the characterization of Vp16-Jazz-transgenic mice that specifically over-express the utrophin gene at the muscular level. A Chromatin Immunoprecipitation assay (ChIP) demonstrated the effective access/binding of the Jazz protein to active chromatin in mouse muscle and Vp16-Jazz was shown to be able to up-regulate endogenous utrophin gene expression by immunohistochemistry, western blot analyses and real-time PCR. To our knowledge, this is the first example of a transgenic mouse expressing an artificial gene coding for a zinc finger based transcription factor. The achievement of Vp16-Jazz transgenic mice validates the strategy of transcriptional targeting of endogenous genes and could represent an exclusive animal model for use in drug discovery and therapeutics.


FEBS Letters | 2003

Functional interaction of the subunit 3 of RNA polymerase II (RPB3) with transcription factor-4 (ATF4)

Roberta De Angelis; Simona Iezzi; Tiziana Bruno; Nicoletta Corbi; Monica Di Padova; Aristide Floridi; Maurizio Fanciulli; Claudio Passananti

RPB3 is a core subunit of RNA polymerase II (pol II) that, together with the RPB11 subunit, forms the heterodimer considered as a functional counterpart of the bacterial α subunit homodimer involved in promoter recognition. We previously employed the yeast two‐hybrid system and identified an interaction between RPB3 and the myogenic transcription factor myogenin, demonstrating an involvement of this subunit in muscle differentiation. In this paper we report the interaction between RPB3 and another known transcription factor, ATF4. We found that the intensity of the interaction between RPB3 and ATF4 is similar to the one between RPB3 and myogenin. This interaction involves an RPB3 specific region not homologous to the prokaryotic α subunit. We demonstrated that RBP3 is able to enhance ATF4 transactivation, whereas the region of RPB3 (Sud) that contacts ATF4, when used as a dominant negative, markedly inhibits ATF4 transactivation activity. Interestingly, ATF4 protein level, as reported for its partner RPB3, increases during C2C7 cell line muscle differentiation.


Molecular and Cellular Neuroscience | 2003

Rb binding protein Che-1 interacts with Tau in cerebellar granule neurons: Modulation during neuronal apoptosis

Christian Barbato; Nicoletta Corbi; Nadia Canu; Maurizio Fanciulli; Annalucia Serafino; M. T. Ciotti; Valentina Libri; Tiziana Bruno; Giuseppina Amadoro; Roberta De Angelis; Pietro Calissano; Claudio Passananti

Che-1 is a recently identified human Rb binding protein that inhibits the Rb growth-suppressing function and regulates cell proliferation. Che-1 contacts the Rb and competes with HDAC1 for Rb-binding site, removing HDAC1 from the Rb/E2F cell cycle-regulated promoters. We have investigated the expression of Che-1 in neuronal cells and we showed that Che-1 directly interacts with Tau. Tau is a microtubule-associated protein involved in the assembly and stabilization of neuronal microtubules network that plays a crucial role modulating neuronal morphogenesis, axonal shape, and transport. In rat cerebellar granule neurons (CGNs) Che-1 partially colocalizes with Tau in the cytoplasm. Che-1 binds the amino-terminal region of Tau protein, which is not involved in microtubule interactions. Tau and Che-1 endogenous proteins coimmunoprecipitate from CGNs cellular lysates. In addition, Che-1/Tau interaction was demonstrated both in overexpressing COS-7 cells and CGNs by FRET analysis. Finally, we observed that Tau/Che-1 interaction is modulated during neuronal apoptosis.


PLOS ONE | 2010

The eEF1γ Subunit Contacts RNA Polymerase II and Binds Vimentin Promoter Region

Nicoletta Corbi; Enrico Maria Batassa; Cinzia Pisani; Annalisa Onori; Maria Grazia Di Certo; Georgios Strimpakos; Maurizio Fanciulli; Elisabetta Mattei; Claudio Passananti

Here, we show that the eukaryotic translation elongation factor 1 gamma (eEF1γ) physically interacts with the RNA polymerase II (pol II) core subunit 3 (RPB3), both in isolation and in the context of the holo-enzyme. Importantly, eEF1γ has been recently shown to bind Vimentin mRNA. By chromatin immunoprecipitation experiments, we demonstrate, for the first time, that eEF1γ is also physically present on the genomic locus corresponding to the promoter region of human Vimentin gene. The eEF1γ depletion causes the Vimentin protein to be incorrectly compartmentalised and to severely compromise cellular shape and mitochondria localisation. We demonstrate that eEF1γ partially colocalises with the mitochondrial marker Tom20 and that eEF1γ depletion increases mitochondrial superoxide generation as well as the total levels of carbonylated proteins. Finally, we hypothesise that eEF1γ, in addition to its role in translation elongation complex, is involved in regulating Vimentin gene by contacting both pol II and the Vimentin promoter region and then shuttling/nursing the Vimentin mRNA from its gene locus to its appropriate cellular compartment for translation.


Journal of Cellular Physiology | 2014

Novel Adeno-Associated Viral Vector Delivering the Utrophin Gene Regulator Jazz Counteracts Dystrophic Pathology in mdx Mice

Georgios Strimpakos; Nicoletta Corbi; Cinzia Pisani; Maria Grazia Di Certo; Annalisa Onori; Siro Luvisetto; Cinzia Severini; Francesca Gabanella; Lucia Monaco; Elisabetta Mattei; Claudio Passananti

Over‐expression of the dystrophin‐related gene utrophin represents a promising therapeutic strategy for Duchenne muscular dystrophy (DMD). The strategy is based on the ability of utrophin to functionally replace defective dystrophin. We developed the artificial zinc finger transcription factor “Jazz” that up‐regulates both the human and mouse utrophin promoter. We observed a significant recovery of muscle strength in dystrophic Jazz‐transgenic mdx mice. Here we demonstrate the efficacy of an experimental gene therapy based on the systemic delivery of Jazz gene in mdx mice by adeno‐associated virus (AAV). AAV serotype 8 was chosen on the basis of its high affinity for skeletal muscle. Muscle‐specific expression of the therapeutic Jazz gene was enhanced by adding the muscle α‐actin promoter to the AAV vector (mAAV). Injection of mAAV8‐Jazz viral preparations into mdx mice resulted in muscle‐specific Jazz expression coupled with up‐regulation of the utrophin gene. We show a significant recovery from the dystrophic phenotype in mAAV8‐Jazz‐treated mdx mice. Histological and physiological analysis revealed a reduction of fiber necrosis and inflammatory cell infiltration associated with functional recovery in muscle contractile force. The combination of ZF‐ATF technology with the AAV delivery can open a new avenue to obtain a therapeutic strategy for treatment of DMD. J. Cell. Physiol. 229: 1283–1291, 2014.


Journal of Cell Science | 2005

RNA polymerase II subunit 3 is retained in the cytoplasm by its interaction with HCR, the psoriasis vulgaris candidate gene product

Nicoletta Corbi; Tiziana Bruno; Roberta De Angelis; Monica Di Padova; Valentina Libri; Maria Grazia Di Certo; Laura Spinardi; Aristide Floridi; Maurizio Fanciulli; Claudio Passananti

Here, we show that the subcellular localization of α-like RNA polymerase II core subunit 3 (RPB3) is regulated during muscle differentiation. We have recently demonstrated that the expression of RPB3 is regulated during muscle differentiation and that, inside RNA polymerase II (RNAP II), it is directly involved in contacting regulatory proteins such as the myogenic transcription factor Myogenin and activating transcription factor ATF4. We show for the first time, that RPB3, in addition to its presence and role inside the RNAP II core enzyme, accumulates in the cytoplasm of cycling myogenic cells and migrates to the nucleus upon induction of the differentiation program. Furthermore, using human RPB3 as bait in a yeast two-hybrid system, we have isolated a novel RPB3 cytoplasmic interacting protein, HCR. HCR, previously identified as α-helix coiled-coil rod homologue, is one of the psoriasis vulgaris (PV) candidate genes. In cycling myogenic C2C7 cells, we show that the RPB3 protein directly interacts with HCR within the cytoplasm. Finally, knocking down HCR expression by RNA interference, we demonstrate that HCR acts as cytoplasmic docking site for RPB3.

Collaboration


Dive into the Nicoletta Corbi's collaboration.

Top Co-Authors

Avatar

Claudio Passananti

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Annalisa Onori

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cinzia Pisani

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cinzia Severini

National Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge