Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Claudio Passananti is active.

Publication


Featured researches published by Claudio Passananti.


The FASEB Journal | 2000

Identification of a novel partner of RNA polymerase II subunit 11, Che-1, which interacts with and affects the growth suppression function of Rb

Maurizio Fanciulli; Tiziana Bruno; Monica Di Padova; Roberta De Angelis; Simona Iezzi; Carla Iacobini; Aristide Floridi; Claudio Passananti

hRPB11 is a core subunit of RNA polymerase II (pol II) specifically down‐regulated on doxorubicin (dox) treatment. Levels of this protein profoundly affect cell differentiation, cell proliferation, and tumorigenicity in vivo. Here we describe Che‐1, a novel human protein that interacts with hRPB11. Che‐1 possesses a domain of high homol‐ogy with Escherichia coli RNA polymerase σ‐factor 70 and SV40 large T antigen. In addition, we report that Che‐1 interacts with the retinoblastoma susceptibility gene (Rb) by two distinct domains. Functionally, we demonstrate that Che‐1 represses the growth suppression function of Rb, counteracting the inhibitory action of Rb on the irans‐activation function of E2F1. These results identify a novel protein that binds Rb and the core of pol II, and suggest that Che‐1 may be part of transcription regulatory complex.—Fanciulli, M., Bruno, T, Di Padova, M., De Angelis, R., Iezzi, S., Iacobini, C, Floridi, A., Passananti, C. Identification of a novel partner of RNA polymerase II subunit 11, Che‐1, which interacts with and affects the growth suppression function of Rb. FASEB J. 14, 904–912 (2000)


PLOS ONE | 2009

Parp1 localizes within the Dnmt1 promoter and protects its unmethylated state by its enzymatic activity

Michele Zampieri; Claudio Passananti; Roberta Calabrese; Mariagrazia Perilli; Nicoletta Corbi; Fabiana De Cave; Tiziana Guastafierro; Maria Giulia Bacalini; Anna Reale; Gianfranco Amicosante; Lilia Calabrese; Jordanka Zlatanova; Paola Caiafa

Background Aberrant hypermethylation of CpG islands in housekeeping gene promoters and widespread genome hypomethylation are typical events occurring in cancer cells. The molecular mechanisms behind these cancer-related changes in DNA methylation patterns are not well understood. Two questions are particularly important: (i) how are CpG islands protected from methylation in normal cells, and how is this protection compromised in cancer cells, and (ii) how does the genome-wide demethylation in cancer cells occur. The latter question is especially intriguing since so far no DNA demethylase enzyme has been found. Methodology/Principal Findings Our data show that the absence of ADP-ribose polymers (PARs), caused by ectopic over-expression of poly(ADP-ribose) glycohydrolase (PARG) in L929 mouse fibroblast cells leads to aberrant methylation of the CpG island in the promoter of the Dnmt1 gene, which in turn shuts down its transcription. The transcriptional silencing of Dnmt1 may be responsible for the widespread passive hypomethylation of genomic DNA which we detect on the example of pericentromeric repeat sequences. Chromatin immunoprecipitation results show that in normal cells the Dnmt1 promoter is occupied by poly(ADP-ribosyl)ated Parp1, suggesting that PARylated Parp1 plays a role in protecting the promoter from methylation. Conclusions/Significance In conclusion, the genome methylation pattern following PARG over-expression mirrors the pattern characteristic of cancer cells, supporting our idea that the right balance between Parp/Parg activities maintains the DNA methylation patterns in normal cells. The finding that in normal cells Parp1 and ADP-ribose polymers localize on the Dnmt1 promoter raises the possibility that PARylated Parp1 marks those sequences in the genome that must remain unmethylated and protects them from methylation, thus playing a role in the epigenetic regulation of gene expression.


Cancer Cell | 2002

Che-1 affects cell growth by interfering with the recruitment of HDAC1 by Rb

Tiziana Bruno; Roberta De Angelis; Francesca De Nicola; Christian Barbato; Monica Di Padova; Nicoletta Corbi; Valentina Libri; Barbara Benassi; Elisabetta Mattei; Alberto Chersi; Silvia Soddu; Aristide Floridi; Claudio Passananti; Maurizio Fanciulli

DNA tumor virus oncoproteins bind and inactivate Rb by interfering with the Rb/HDAC1 interaction. Che-1 is a recently identified human Rb binding protein that inhibits the Rb growth suppressing function. Here we show that Che-1 contacts the Rb pocket region and competes with HDAC1 for Rb binding site, removing HDAC1 from the Rb/E2F complex in vitro and from the E2F target promoters in vivo. Che-1 overexpression activates DNA synthesis in quiescent NIH-3T3 cells through HDAC1 displacement. Consistently, Che-1-specific RNA interference affects E2F activity and cell proliferation in human fibroblasts but not in the pocket protein-defective 293 cells. These findings indicate the existence of a pathway of Rb regulation supporting Che-1 as the cellular counterpart of DNA tumor virus oncoproteins.


Biochemical Journal | 2012

ADP-ribose polymers localized on Ctcf-Parp1-Dnmt1 complex prevent methylation of Ctcf target sites.

Michele Zampieri; Tiziana Guastafierro; Roberta Calabrese; Fabio Ciccarone; Maria Giulia Bacalini; Anna Reale; Mariagrazia Perilli; Claudio Passananti; Paola Caiafa

PARylation [poly(ADP-ribosyl)ation] is involved in the maintenance of genomic methylation patterns through its control of Dnmt1 [DNA (cytosine-5)-methyltransferase 1] activity. Our previous findings indicated that Ctcf (CCCTC-binding factor) may be an important player in key events whereby PARylation controls the unmethylated status of some CpG-rich regions. Ctcf is able to activate Parp1 [poly(ADP-ribose) polymerase 1], which ADP-ribosylates itself and, in turn, inhibits DNA methylation via non-covalent interaction between its ADP-ribose polymers and Dnmt1. By such a mechanism, Ctcf may preserve the epigenetic pattern at promoters of important housekeeping genes. The results of the present study showed Dnmt1 as a new protein partner of Ctcf. Moreover, we show that Ctcf forms a complex with Dnmt1 and PARylated Parp1 at specific Ctcf target sequences and that PARylation is responsible for the maintenance of the unmethylated status of some Ctcf-bound CpGs. We suggest a mechanism by which Parp1, tethered and activated at specific DNA target sites by Ctcf, preserves their methylation-free status.


Journal of Cell Science | 2007

NRAGE associates with the anti-apoptotic factor Che-1 and regulates its degradation to induce cell death

Maria Grazia Di Certo; Nicoletta Corbi; Tiziana Bruno; Simona Iezzi; Francesca De Nicola; Agata Desantis; Maria Teresa Ciotti; Elisabetta Mattei; Aristide Floridi; Maurizio Fanciulli; Claudio Passananti

Neurotrophin receptor-interacting MAGE homolog (NRAGE) has been recently identified as a cell-death inducer, involved in molecular events driving cells through apoptotic networks during neuronal development. Recently, we have focused on the functional role of Che-1, also known as apoptosis-antagonizing transcription factor (AATF), a protein involved in cell cycle control and gene transcription. Increasing evidence suggests that Che-1 is involved in apoptotic signalling in neural tissues. In cortical neurons Che-1 exhibits an anti-apoptotic activity, protecting cells from neuronal damage induced by amyloid β-peptide. Here, we report that Che-1 interacts with NRAGE and that an EGFP-NRAGE fusion protein inhibits nuclear localization of Che-1, by sequestering it within the cytoplasmic compartment. Furthermore, NRAGE overexpression downregulates endogenous Che-1 by targeting it for proteasome-dependent degradation. Finally, we propose that Che-1 is a functional antagonist of NRAGE, because its overexpression completely reverts NRAGE-induced cell-death.


The Journal of Neuroscience | 2013

Nuclear Factor κB-Dependent Histone Acetylation is Specifically Involved in Persistent Forms of Memory

Noel Federman; V. de la Fuente; Gisela Zalcman; Nicoletta Corbi; A. Onori; Claudio Passananti; Arturo Romano

Memory consolidation requires gene expression regulation by transcription factors, which eventually may induce chromatin modifications as histone acetylation. This mechanism is regulated by histone acetylases and deacetylases. It is not yet clear whether memory consolidation always recruits histone acetylation or it is only engaged in more persistent memories. To address this question, we used different strength of training for novel object recognition task in mice. Only strong training induced a long-lasting memory and an increase in hippocampal histone H3 acetylation. Histone acetylase inhibition in the hippocampus during consolidation impaired memory persistence, whereas histone deacetylase inhibition caused weak memory to persist. Nuclear factor κB (NF-κB) transcription factor inhibition impaired memory persistence and, concomitantly, reduced the general level of H3 acetylation. Accordingly, we found an important increase in H3 acetylation at a specific NF-κB-regulated promoter region of the Camk2d gene, which was reversed by NF-kB inhibition. These results show for the first time that histone acetylation is a specific molecular signature of enduring memories.


PLOS ONE | 2007

Utrophin up-regulation by an artificial transcription factor in transgenic mice.

Elisabetta Mattei; Nicoletta Corbi; Maria Grazia Di Certo; Georgios Strimpakos; Cinzia Severini; Annalisa Onori; Agata Desantis; Valentina Libri; Serena Buontempo; Aristide Floridi; Maurizio Fanciulli; Dilair Baban; Kay E. Davies; Claudio Passananti

Duchenne Muscular Dystrophy (DMD) is a severe muscle degenerative disease, due to absence of dystrophin. There is currently no effective treatment for DMD. Our aim is to up-regulate the expression level of the dystrophin related gene utrophin in DMD, complementing in this way the lack of dystrophin functions. To this end we designed and engineered several synthetic zinc finger based transcription factors. In particular, we have previously shown that the artificial three zinc finger protein named Jazz, fused with the appropriate effector domain, is able to drive the transcription of a test gene from the utrophin promoter “A”. Here we report on the characterization of Vp16-Jazz-transgenic mice that specifically over-express the utrophin gene at the muscular level. A Chromatin Immunoprecipitation assay (ChIP) demonstrated the effective access/binding of the Jazz protein to active chromatin in mouse muscle and Vp16-Jazz was shown to be able to up-regulate endogenous utrophin gene expression by immunohistochemistry, western blot analyses and real-time PCR. To our knowledge, this is the first example of a transgenic mouse expressing an artificial gene coding for a zinc finger based transcription factor. The achievement of Vp16-Jazz transgenic mice validates the strategy of transcriptional targeting of endogenous genes and could represent an exclusive animal model for use in drug discovery and therapeutics.


Journal of Biological Chemistry | 2007

The Prolyl Isomerase Pin1 Affects Che-1 Stability in Response to Apoptotic DNA Damage

Francesca De Nicola; Tiziana Bruno; Simona Iezzi; Monica Di Padova; Aristide Floridi; Claudio Passananti; Giannino Del Sal; Maurizio Fanciulli

We have previously demonstrated that DNA damage leads to stabilization and accumulation of Che-1, an RNA polymerase II-binding protein that plays an important role in transcriptional activation of p53 and in maintenance of the G2/M checkpoint. Here we show that Che-1 is down-regulated during the apoptotic process. We found that the E3 ligase HMD2 physically and functionally interacts with Che-1 and promotes its degradation via the ubiquitin-dependent proteasomal system. Furthermore, we found that in response to apoptotic stimuli Che-1 interacts with the peptidyl-prolyl isomerase Pin1 and that conformational changes generated by Pin1 are required for Che-1/HDM2 interaction. Notably, a Che-1 mutant lacking the capacity to bind Pin1 exhibits an increased half-life and this correlates with a diminished apoptosis in response to genotoxic stress. Our results establish Che-1 as a new Pin1 and HDM2 target and confirm its important role in the cellular response to DNA damage.


FEBS Letters | 2003

Functional interaction of the subunit 3 of RNA polymerase II (RPB3) with transcription factor-4 (ATF4)

Roberta De Angelis; Simona Iezzi; Tiziana Bruno; Nicoletta Corbi; Monica Di Padova; Aristide Floridi; Maurizio Fanciulli; Claudio Passananti

RPB3 is a core subunit of RNA polymerase II (pol II) that, together with the RPB11 subunit, forms the heterodimer considered as a functional counterpart of the bacterial α subunit homodimer involved in promoter recognition. We previously employed the yeast two‐hybrid system and identified an interaction between RPB3 and the myogenic transcription factor myogenin, demonstrating an involvement of this subunit in muscle differentiation. In this paper we report the interaction between RPB3 and another known transcription factor, ATF4. We found that the intensity of the interaction between RPB3 and ATF4 is similar to the one between RPB3 and myogenin. This interaction involves an RPB3 specific region not homologous to the prokaryotic α subunit. We demonstrated that RBP3 is able to enhance ATF4 transactivation, whereas the region of RPB3 (Sud) that contacts ATF4, when used as a dominant negative, markedly inhibits ATF4 transactivation activity. Interestingly, ATF4 protein level, as reported for its partner RPB3, increases during C2C7 cell line muscle differentiation.


Cancer Cell | 2010

Che-1 Promotes Tumor Cell Survival by Sustaining Mutant p53 Transcription and Inhibiting DNA Damage Response Activation

Tiziana Bruno; Agata Desantis; Gianluca Bossi; Silvia Di Agostino; Cristina Sorino; Francesca De Nicola; Simona Iezzi; Annapaola Franchitto; Barbara Benassi; Sergio Galanti; Francesca La Rosa; Aristide Floridi; Alfonso Bellacosa; Claudio Passananti; Giovanni Blandino; Maurizio Fanciulli

Che-1 is a RNA polymerase II binding protein involved in the regulation of gene transcription and, in response to DNA damage, promotes p53 transcription. In this study, we investigated whether Che-1 regulates mutant p53 expression. We found that Che-1 is required for sustaining mutant p53 expression in several cancer cell lines, and that Che-1 depletion by siRNA induces apoptosis both in vitro and in vivo. Notably, loss of Che-1 activates DNA damage checkpoint response and induces transactivation of p73. Therefore, these findings underline the important role that Che-1 has in survival of cells expressing mutant p53.

Collaboration


Dive into the Claudio Passananti's collaboration.

Top Co-Authors

Avatar

Nicoletta Corbi

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Annalisa Onori

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cinzia Pisani

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge