Nicolle Kraenkel
University of Bristol
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nicolle Kraenkel.
Arteriosclerosis, Thrombosis, and Vascular Biology | 2010
Atsuhiko Oikawa; Mauro Siragusa; Federico Quaini; Giuseppe Mangialardi; Rajesh Katare; Andrea Caporali; Jaap D. van Buul; Floris van Alphen; Gallia Graiani; Gaia Spinetti; Nicolle Kraenkel; Lucia Prezioso; Costanza Emanueli; Paolo Madeddu
Objective—The impact of diabetes on the bone marrow (BM) microenvironment was not adequately explored. We investigated whether diabetes induces microvascular remodeling with negative consequence for BM homeostasis. Methods and Results—We found profound structural alterations in BM from mice with type 1 diabetes with depletion of the hematopoietic component and fatty degeneration. Blood flow (fluorescent microspheres) and microvascular density (immunohistochemistry) were remarkably reduced. Flow cytometry verified the depletion of MECA-32+ endothelial cells. Cultured endothelial cells from BM of diabetic mice showed higher levels of oxidative stress, increased activity of the senescence marker &bgr;-galactosidase, reduced migratory and network-formation capacities, and increased permeability and adhesiveness to BM mononuclear cells. Flow cytometry analysis of lineage− c-Kit+ Sca-1+ cell distribution along an in vivo Hoechst-33342 dye perfusion gradient documented that diabetes depletes lineage− c-Kit+ Sca-1+ cells predominantly in the low-perfused part of the marrow. Cell depletion was associated to increased oxidative stress, DNA damage, and activation of apoptosis. Boosting the antioxidative pentose phosphate pathway by benfotiamine supplementation prevented microangiopathy, hypoperfusion, and lineage− c-Kit+ Sca-1+ cell depletion. Conclusion—We provide novel evidence for the presence of microangiopathy impinging on the integrity of diabetic BM. These discoveries offer the framework for mechanistic solutions of BM dysfunction in diabetes.
Cardiovascular Research | 2008
Gaia Spinetti; Nicolle Kraenkel; Costanza Emanueli; Paolo Madeddu
Over the past two decades, extensive research has focused on arterial remodelling in both physiological and pathological ageing. The concept now describes the growth as well as the rearrangement of cellular components and extracellular matrix, resulting in either reduction or increase in vessel lumen. In diabetes, remodelling extends to capillaries, microvascular beds, and arteries of different calibre. This process is paralleled by accelerated atherosclerosis and accounts for an increased incidence of ischaemic complications. The incapacity of pre-existing and de novo formed collaterals to bypass atherosclerotic occlusions, combined with a decline in tissue capillary density, is responsible for the delayed recovery from ischaemia and ultimately leads to organ failure. The mechanisms of vascular remodelling are incompletely understood, but metabolic and mechanical factors seem to play an important role. Hyperglycaemia represents the main factor responsible for the fast progression of atherosclerosis as well as microangiopathy. However, intensive blood glucose control alone is insufficient to reduce the risk of macrovascular complications. Pharmacological control of oxidative stress and stimulation of nitric oxide release have proved to exert beneficial effects on vascular remodelling in experimental diabetic models. New approaches of regenerative medicine using vascular progenitor cells for the treatment of ischaemic disease have been shown to be safe and are now being tested for efficacy in pre-clinical and clinical trials.
Circulation Research | 2008
Andrea Caporali; Elisabetta Pani; Anton J.G. Horrevoets; Nicolle Kraenkel; Atsuhiko Oikawa; Graciela B. Sala-Newby; Marco Meloni; Brunella Cristofaro; Gallia Graiani; Aurélie S. Leroyer; Chantal M. Boulanger; Gaia Spinetti; Sung Ok Yoon; Paolo Madeddu; Costanza Emanueli
Diabetes impairs endothelial function and reparative neovascularization. The p75 receptor of neurotrophins (p75NTR), which is scarcely present in healthy endothelial cells (ECs), becomes strongly expressed by capillary ECs after induction of peripheral ischemia in type-1 diabetic mice. Here, we show that gene transfer-induced p75NTR expression impairs the survival, proliferation, migration, and adhesion capacities of cultured ECs and endothelial progenitor cells (EPCs) and inhibits angiogenesis in vitro. Moreover, intramuscular p75NTR gene delivery impairs neovascularization and blood flow recovery in a mouse model of limb ischemia. These disturbed functions are associated with suppression of signaling mechanisms implicated in EC survival and angiogenesis. In fact, p75NTR depresses the VEGF-A/Akt/eNOS/NO pathway and additionally reduces the mRNA levels of ITGB1 [beta (1) integrin], BIRC5 (survivin), PTTG1 (securin) and VEZF1. Diabetic mice, which typically show impaired postischemic muscular neovascularization and blood perfusion recovery, have these defects corrected by intramuscular gene transfer of a dominant negative mutant form of p75NTR. Collectively, our data newly demonstrate the antiangiogenic action of p75NTR and open new avenues for the therapeutic use of p75NTR inhibition to combat diabetes-induced microvascular liabilities.
Arteriosclerosis, Thrombosis, and Vascular Biology | 2007
Paolo Madeddu; Nicolle Kraenkel; Luciola S Barcelos; Mauro Siragusa; Paola Campagnolo; Atsuhiko Oikawa; Andrea Caporali; Andrew Herman; Ornella Azzolino; Laura Barberis; Alessia Perino; Federico Damilano; Costanza Emanueli; Emilio Hirsch
Objective—We evaluated whether phosphatidylinositol 3-kinase γ (PI3Kγ) plays a role in reparative neovascularization and endothelial progenitor cell (EPC) function. Methods and Results—Unilateral limb ischemia was induced in mice lacking the PI3Kγ gene (PI3Kγ−/−) or expressing a catalytically inactive mutant (PI3KγKD/KD) and wild-type controls (WT). Capillarization and arteriogenesis were reduced in PI3Kγ−/− ischemic muscles resulting in delayed reperfusion compared with WT, whereas reparative neovascularization was preserved in PI3KγKD/KD. In PI3Kγ−/− muscles, endothelial cell proliferation was reduced, apoptosis was increased, and interstitial space was infiltrated with leukocytes but lacked cKit+ progenitor cells that in WT muscles typically surrounded arterioles. PI3Kγ is constitutively expressed by WT EPCs, with expression levels being upregulated by hypoxia. PI3Kγ−/− EPCs showed a defect in proliferation, survival, integration into endothelial networks, and migration toward SDF-1. The dysfunctional phenotype was associated with nuclear constraining of FOXO1, reduced Akt and eNOS phosphorylation, and decreased nitric oxide (NO) production. Pretreatment with an NO donor corrected the migratory defect of PI3Kγ−/− EPCs. PI3KγKD/KD EPCs showed reduced Akt phosphorylation, but constitutive activation of eNOS and preserved proliferation, survival, and migration. Conclusions—We newly demonstrated that PI3Kγ modulates angiogenesis, arteriogenesis, and vasculogenesis by mechanisms independent from its kinase activity.
Arteriosclerosis, Thrombosis, and Vascular Biology | 2017
Christian Templin; Julia Volkmann; Maximilian Y. Emmert; Pavani Mocharla; Maja Müller; Nicolle Kraenkel; Jelena R. Ghadri; Martin Meyer; Beata Styp-Rekowska; Sylvie Briand; Roland Klingenberg; Milosz Jaguszewski; Christian M. Matter; Valentin Djonov; François Mach; Stephan Windecker; Simon P. Hoerstrup; Thomas Thum; Thomas F. Lüscher; Ulf Landmesser
Objective— Proangiogenic effects of mobilized bone marrow–derived stem/progenitor cells are essential for cardiac repair after myocardial infarction. MicroRNAs (miRNA/miR) are key regulators of angiogenesis. We investigated the differential regulation of angio-miRs, that is, miRNAs regulating neovascularization, in mobilized CD34+ progenitor cells obtained from patients with an acute ST-segment–elevation myocardial infarction (STEMI) as compared with those with stable coronary artery disease or healthy subjects. Approach and Results— CD34+ progenitor cells were isolated from patients with STEMI (on day 0 and day 5), stable coronary artery disease, and healthy subjects (n=27). CD34+ progenitor cells of patients with STEMI exhibited increased proangiogenic activity as compared with CD34+ cells from the other groups. Using a polymerase chain reaction–based miRNA-array and real-time polymerase chain reaction validation, we identified a profound upregulation of 2 known angio-miRs, that are, miR-378 and let-7b, in CD34+ cells of patients with STEMI. Especially, we demonstrate that miR-378 is a critical regulator of the proangiogenic capacity of CD34+ progenitor cells and its stimulatory effects on endothelial cells in vitro and in vivo, whereas let-7b upregulation in CD34+ cells failed to proof its effect on endothelial cells in vivo. Conclusions— The present study demonstrates a significant upregulation of the angio-miRs miR-378 and let-7b in mobilized CD34+ progenitor cells of patients with STEMI. The increased proangiogenic activity of these cells in patients with STEMI and the observation that in particular miR-378 regulates the angiogenic capacity of CD34+ progenitor cells in vivo suggest that this unique miRNA expression pattern represents a novel endogenous repair mechanism activated in acute myocardial infarction.
Circulation Research | 2008
Andrea Caporali; Elisabetta Pani; Anton J.G. Horrevoets; Nicolle Kraenkel; Atsuhiko Oikawa; Graciela B. Sala-Newby; Marco Meloni; Brunella Cristofaro; Gallia Graiani; Aurélie S. Leroyer; Chantal M. Boulanger; Gaia Spinetti; Sung Ok Yoon; Paolo Madeddu; Costanza Emanueli
Diabetes impairs endothelial function and reparative neovascularization. The p75 receptor of neurotrophins (p75NTR), which is scarcely present in healthy endothelial cells (ECs), becomes strongly expressed by capillary ECs after induction of peripheral ischemia in type-1 diabetic mice. Here, we show that gene transfer-induced p75NTR expression impairs the survival, proliferation, migration, and adhesion capacities of cultured ECs and endothelial progenitor cells (EPCs) and inhibits angiogenesis in vitro. Moreover, intramuscular p75NTR gene delivery impairs neovascularization and blood flow recovery in a mouse model of limb ischemia. These disturbed functions are associated with suppression of signaling mechanisms implicated in EC survival and angiogenesis. In fact, p75NTR depresses the VEGF-A/Akt/eNOS/NO pathway and additionally reduces the mRNA levels of ITGB1 [beta (1) integrin], BIRC5 (survivin), PTTG1 (securin) and VEZF1. Diabetic mice, which typically show impaired postischemic muscular neovascularization and blood perfusion recovery, have these defects corrected by intramuscular gene transfer of a dominant negative mutant form of p75NTR. Collectively, our data newly demonstrate the antiangiogenic action of p75NTR and open new avenues for the therapeutic use of p75NTR inhibition to combat diabetes-induced microvascular liabilities.
Circulation Research | 2008
Andrea Caporali; Elisabetta Pani; Anton J.G. Horrevoets; Nicolle Kraenkel; Atsuhiko Oikawa; Graciela B. Sala-Newby; Marco Meloni; Brunella Cristofaro; Gallia Graiani; Aurélie S. Leroyer; Chantal M. Boulanger; Andrew Herman; Gaia Spinetti; Sung Ok Yoon; Paolo Madeddu; Costanza Emanueli
Diabetes impairs endothelial function and reparative neovascularization. The p75 receptor of neurotrophins (p75NTR), which is scarcely present in healthy endothelial cells (ECs), becomes strongly expressed by capillary ECs after induction of peripheral ischemia in type-1 diabetic mice. Here, we show that gene transfer-induced p75NTR expression impairs the survival, proliferation, migration, and adhesion capacities of cultured ECs and endothelial progenitor cells (EPCs) and inhibits angiogenesis in vitro. Moreover, intramuscular p75NTR gene delivery impairs neovascularization and blood flow recovery in a mouse model of limb ischemia. These disturbed functions are associated with suppression of signaling mechanisms implicated in EC survival and angiogenesis. In fact, p75NTR depresses the VEGF-A/Akt/eNOS/NO pathway and additionally reduces the mRNA levels of ITGB1 [beta (1) integrin], BIRC5 (survivin), PTTG1 (securin) and VEZF1. Diabetic mice, which typically show impaired postischemic muscular neovascularization and blood perfusion recovery, have these defects corrected by intramuscular gene transfer of a dominant negative mutant form of p75NTR. Collectively, our data newly demonstrate the antiangiogenic action of p75NTR and open new avenues for the therapeutic use of p75NTR inhibition to combat diabetes-induced microvascular liabilities.
Circulation | 2012
Christoph Brenner; Nicolle Kraenkel; Sarah Kuehlenthal; Lars Israel; Hans D. Theiss; Ulf Landmesser; Wolfgang-Michael Franz
Cardiovascular Research | 2012
Jonathan Rowlinson; Nicolle Kraenkel; Raimondo Ascione; Paolo Madeddu
Circulation | 2011
Nicolle Kraenkel; Kira Kuschnerus; Maja Mueller; Timo Speer; Sylvie Briand; Michael Bader; Paolo Madeddu; François Alhenc-Gelas; T.F. Luescher; Ulf Landmesser