Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nicolò Mauro is active.

Publication


Featured researches published by Nicolò Mauro.


Biomacromolecules | 2015

Biotin-Containing Reduced Graphene Oxide-Based Nanosystem as a Multieffect Anticancer Agent: Combining Hyperthermia with Targeted Chemotherapy.

Nicolò Mauro; Cinzia Scialabba; Gennara Cavallaro; Mariano Licciardi; Gaetano Giammona

Among the relevant properties of graphene derivatives, their ability of acting as an energy-converting device so as to produce heat (i.e., thermoablation and hyperthermia) was more recently taken into account for the treatment of solid tumors. In this pioneering study, for the first time, the in vitro RGO-induced hyperthermia was assessed and combined with the stimuli-sensitive anticancer effect of a biotinylated inulin-doxorubicin conjugate (CJ-PEGBT), hence, getting to a nanosystem endowed with synergic anticancer effects and high specificity. CJ-PEGBT was synthesized by linking pentynoic acid and citraconic acid to inulin. The citraconylamide pendants, used as pH reversible spacer, were exploited to further conjugate doxorubicin, whereas the alkyne moiety was orthogonally functionalized with an azido PEG-biotin derivative by copper(II) catalyzed 1,3-dipolar cycloaddition. DSC measures, AFM, and UV spectrophotometry were employed to systematically investigate adsorption of CJ-PEGBT onto RGO and its physicochemical stability in aqueous media, demonstrating that a stable π-staked nanosystem can be obtained. In vitro tests using cancer breast cells (MCF-7) showed the ability of the RGO/CJ-PEGBT of efficiently killing cancer cells both via a selective laser beam thermoablation and hyperthermia-triggered chemotherapy. If compared with the nonbiotinylated nanosystem, including virgin RGO and the free conjugate, RGO/CJ-PEGBT is endowed with a smart combination of properties which warrant potential as an anticancer nanomedicine.


European Journal of Pharmaceutics and Biopharmaceutics | 2014

Inulin-based polymer coated SPIONs as potential drug delivery systems for targeted cancer therapy

Cinzia Scialabba; Mariano Licciardi; Nicolò Mauro; Flavio Rocco; M. Ceruti; Gaetano Giammona

This paper deal with the synthesis and characterization of PEGylated squalene-grafted-inulin amphiphile capable of self-assembling and self-organizing into nanocarriers once placed in aqueous media. It was exploited as coating agent for obtaining doxorubicin loaded superparamagnetic iron oxide nanoparticles (SPIONs) endowed with stealth like behavior and excellent physicochemical stability. Inulin was firstly modified in the side chain with primary amine groups, followed in turn by conjugation with squalenoyl derivatives through common amidic coupling agents and PEGylation by imine linkage. Polymer coated SPIONs were so obtained by spontaneous self-assembling of inulin copolymer onto magnetite surface involving hydrophobic-hydrophobic interactions between the metallic core and the squalene moieties. The system was characterized in terms of hydrodynamic radius, zeta potential, shape and drug loading capacity. On the whole, the stealth-like shell stabilized the suspension in aqueous media, though allowing the release of the doxorubicin loaded in therapeutic range. The cytotoxicity profile on cancer (HCT116) cell line and in vitro drug uptake were evaluated both with and without an external magnetic field used as targeting agent and uptake promoter, displaying that magnetic targeting implies advantageous therapeutic effects, that is amplified drug uptake and increased anticancer activity throughout the tumor mass.


RSC Advances | 2015

Self-organized environment-sensitive inulin–doxorubicin conjugate with a selective cytotoxic effect towards cancer cells

Nicolò Mauro; Simona Campora; Cinzia Scialabba; Giorgia Adamo; Mariano Licciardi; Giulio Ghersi; Gaetano Giammona

An inulin-based random copolymer bearing high dose doxorubicin (18.45% on a weight basis), INU-EDA-P,C-DOXO, was prepared by coupling doxorubicin with inulin though a citraconylamide bridge used as a pH sensitive spacer. A further conjugation with pentynoic acid via an amidic bond led to the hydrophobization of the copolymer which allows the acquisition of a self-assembling ability at low concentration (0.33 mg mL−1) combining both Π–Π stacking and London interactions. Drug release studies were carried out at different pH demonstrating a remarkable pH dependency, where the maximum release rate was observed at pH mimicking cancer tissue and lysosomal environments. Besides, by measuring ζ-potential variations as a function of the pH, INU-EDA-P,C-DOXO proved capable of undergoing charge reversal at acidic pH, changing its physicochemical and biological behavior. In vitro tests with cancer (MDA-MB 231) and normal (HB-2) breast cells were carried out to verify the conjugate aptitude to follow different routes to enter cells depending on the microenvironment. This finding was supported by quantitative up-take studies, which revealed that INU-EDA-P,C-DOXO released doxorubicin before entering cancer cells, as the entire copolymer diffused across normal cell membranes without relevant modifications.


Current Drug Delivery | 2017

Photothermal Ablation of Cancer Cells Using Folate-Coated Gold/ Graphene Oxide Composite

Nicolò Mauro; Anna Li Volsi; Cinzia Scialabba; Mariano Licciardi; Gennara Cavallaro; Gaetano Giammona

OBJECTIVE A new tumor targeted polymer-coated gold/graphene hybrid has been developed for achieving simultaneously thermoablation and chemoterapy of folate receptor-positive cancer cells. METHODS The gold/graphene hybrid was prepared by depositing gold nanospheres onto graphene oxide and coating it with an inulin-folate conjugate. Paclitaxel was loaded by sonication. The hybrid was characterized by UV-Vis spectroscopy, DSC analysis and SEM microscopy. The cytotoxicity, thermoablation and anticancer activity were evaluated in vitro on MCF-7 and 16 HBE. RESULTS In vitro tests showed that the paclitaxel-loaded hybrid improved the effectiveness of the drug especially after photothermal treatments. CONCLUSION On the whole, while gold/graphene composite provided an excellent time-dependent photothermal effect, the loading of paclitaxel allowed a suitable chemotherapy, thus killing cancer cells both via a selective laser beam thermoablation and hyperthermia-triggered chemotherapy.


International Journal of Pharmaceutics | 2017

Enhanced adhesion and in situ photothermal ablation of cancer cells in surface-functionalized electrospun microfiber scaffold with graphene oxide

Nicolò Mauro; Cinzia Scialabba; Giovanna Pitarresi; Gaetano Giammona

The physicochemical characteristics of a biomaterial surface highly affect the interaction with living cells. Recently, much attention has been focused on the adhesion properties of functional biomaterials toward cancer cells, since is expected to control metastatic spread of a tumor, which is related to good probability containing the progression of disease burden. Here, we designed an implantable poly(caprolactone)-based electrospun microfiber scaffold, henceforth PCLMF-GO, to simultaneously capture and kill cancer cells by tuning physicochemical features of the hybrid surface through nitrogen plasma activation and hetero-phase graphene oxide (GO) covalent functionalization. The surface immobilization of GO implies enhanced cell adhesion and proliferation, promoting the selective adhesion of cancer cells, even if allowing cancer associated fibroblast (CAFs) capture. We also display that the functionalization with GO, thanks to the high near-infrared (NIR) absorbance, enables the discrete photothermal eradication of the captured cancer cells in situ (≈98%).


Biomacromolecules | 2017

Double-Network-Structured Graphene Oxide-Containing Nanogels as Photothermal Agents for the Treatment of Colorectal Cancer

Calogero Fiorica; Nicolò Mauro; Giovanna Pitarresi; Cinzia Scialabba; Fabio Salvatore Palumbo; Gaetano Giammona

Here, we reported the production of hyaluronic acid/polyaspartamide-based double-network nanogels for the potential treatment of colorectal carcinoma. Graphene oxide, thanks to the huge aromatic surface area, allows to easily load high amount of irinotecan (33.0% w/w) and confers to the system hyperthermic properties when irradiated with a near-infrared (NIR) laser beam. We demonstrate that the release of antitumor drug is influenced both by the pH of the external medium and the NIR irradiation process. In vitro biological studies, conducted on human colon cancer cells (HCT 116), revealed that nanogels are uptaken by the cancer cells and, in the presence of the antitumor drug, can produce a synergistic hyperthermic/cytotoxic effect. Finally, 3D experiments demonstrate that it is possible to conduct thermal ablation of solid tumors after the intratumoral administration of nanogels.


ACS Applied Materials & Interfaces | 2018

Branched High Molecular Weight Glycopolypeptide With Broad-Spectrum Antimicrobial Activity for the Treatment of Biofilm Related Infections

Nicolò Mauro; Domenico Schillaci; Paola Varvarà; Maria Grazia Cusimano; Daniela Maria Geraci; Mario Giuffrè; Gennara Cavallaro; Carmelo Massimo Maida; Gaetano Giammona

There are few therapeutic options to simultaneously tackle Staphylococcus aureus and Pseudomonas aeruginosa, two of the most relevant nosocomial and antibiotic-resistant pathogens responsible for implant, catheters and wound severe infections. The design and synthesis of polymers with inherent antimicrobial activity have gained increasing attention as a safe strategy to treat multi-drug-resistant microbes. Here, we tested the activity of a new polymeric derivative with glycopolypeptide architecture (PAA-VC) bearing l-arginine, vancomycin, and colistin as side chains acting against multiple targets, which give rise to a broad spectrum antimicrobial activity favorably combining specific and nonspecific perturbation of the bacterial membrane. PAA-VC has been tested against planktonic and established biofilms of reference strains S. aureus ATCC 25923 and P. aeruginosa ATCC 15442 and susceptible or antibiotic resistant clinical isolates of the above-mentioned microorganisms. MIC values observed for the conjugate (48-190 and 95-190 nM for P. aeruginosa and S. aureus strains, respectively) showed higher efficacy if compared with the free vancomycin (MICs within 1.07-4.28 μM) and colistin (MICs within 0.63-1.33 μM). Additionally, being highly biocompatible (IC50 > 1000, 430, and 250 μg mL-1 for PAA-VC, vancomycin and colistin respectively) high-dosage can be adopted for the eradication of infections in patients. This positively influences the anti-biofilm activity of the conjugate leading to a quasi-total eradication of established clinically relevant biofilms (inhibition >90% at 500 μg mL-1). We believe that the in vitro presented data, especially the activity against established biofilms of two relevant pathogens, the high biocompatibility and the good mucoadhesion properties, would allow the use of PAA-VC as promising candidate to successfully address emerging infections.


International Journal of Pharmaceutics | 2017

Surfactant effect on the physicochemical characteristics of cationic solid lipid nanoparticles.

Chiara Botto; Nicolò Mauro; Erika Amore; Elisabetta Martorana; Gaetano Giammona; Maria Luisa Bondì

Solid lipid nanoparticles (SLNs) may be considered as a new approach for therapeutics for many diseases. In addition to drug delivery, their use as non-viral vectors for gene delivery can be obtained by including cationic lipids, which provide a positive surface potential that favors binding to the nucleic acids as DNA, siRNA, miRNA, etc. In fact, the addition of cationic surfactants is indispensable for obtaining nanoparticles with surface positive charge. In this study, three different cationic lipids (dioctadecyl dimethyl ammonium bromide, cetyltrimethyl ammonium bromide, cetylpyridinium chloride) and Brij 76 as nonionic surfactant were employed to formulate Precirol ATO 5 based cSLN using pEGFP-LUC as model plasmid. The physicochemical properties of cSLN were influenced by both type and amount of surfactants. Thermal analyses of bulk cSLN showed endothermic peaks significantly different from the ones of the single pure components, hinting a complete entanglement of the lipid matrix with the surfactants and justifying the different behavior of the cSLN in the ability to interact with the plasmid DNA. Finally, the biocompatibility of cSLN was demonstrated by hemolytic assays. These results may give an insight into the choice of surfactants in order to obtain non-toxic and highly effective delivery systems for gene therapy.


RSC Advances | 2016

Polyaminoacid–doxorubicin prodrug micelles as highly selective therapeutics for targeted cancer therapy

Nicolò Mauro; Simona Campora; Giorgia Adamo; Cinzia Scialabba; Giulio Ghersi; Gaetano Giammona

An amphiphilic copolymer carrying high-dose doxorubicin (21% on a weight basis), PHEA–EDA–P,C–Doxo, was prepared by coupling doxorubicin with a biocompatible polyaminoacid through a pH-sensitive spacer. Additional derivatization with 4-pentynoic acid endows it with self-assembling properties by means of π–π stacking. These micelles can be triggered to promptly release drug in lysosomes (∼40% in 12 h) through pH-dependent micelle hydrolysis after uptake. In vitro tests on co-cultures of cancer (MDA-MB 231) and normal (HB-2) breast cells proved that the conjugate was selectively internalized into the former rather than normal cells, exploiting the caveolae-dependent endocytosis pathway, explaining the selective cytotoxic effect toward cancer cells. Intracellular trafficking study of MDA-MB 231 showed that the delivery of the endocytosed drug occurs through the direct fusion of caveosomes with late lysosomes, triggering a massive release in the cytoplasm, bringing about cell death. Dose-effectiveness and mechanistic data indicate that PHEA–EDA–P,C–Doxo is endowed with a distinctive combination of selectivity and pharmacological potency (EC50 13 μM, Emax = 77% and EC50 > 25 μM, Emax = 21% for cancer and healthy cells respectively) that makes it an excellent candidate for future preclinical studies.


ChemMedChem | 2016

Cationic Supramolecular Vesicular Aggregates for Pulmonary Tissue Selective Delivery in Anticancer Therapy

Mariano Licciardi; Donatella Paolino; Nicolò Mauro; Donato Cosco; Gaetano Giammona; Massimo Fresta; Gennara Cavallaro; Christian Celia

The biopharmaceutical properties of supramolecular vesicular aggregates (SVAs) were characterized with regard to their physicochemical features and compared with cationic liposomes (CLs). Neutral and cationic SVAs were synthesized using two different copolymers of poly(aspartyl hydrazide) by thin‐layer evaporation and extrusion techniques. Both copolymers were self‐assembled in pre‐formulated liposomes and formed neutral and cationic SVAs. Gemcitabine hydrochloride (GEM) was used as an anticancer drug and loaded by a pH gradient remote loading procedure, which significantly increased drug loading inside the SVAs. The resulting average size of the SVAs was 100 nm. The anticancer activity of GEM‐loaded neutral and cationic SVAs was tested in human alveolar basal epithelial (A549) and colorectal cancer (CaCo‐2) cells. GEM‐loaded cationic SVAs increased the anticancer activity in A549 and CaCo‐2 cells relative to free drug, neutral SVAs, and CLs. In vivo biodistribution in Wistar rats showed that cationic SVAs accumulate at higher concentrations in lung tissue than neutral SVAs and CLs. Cationic SVAs may therefore serve as an innovative future therapy for pulmonary carcinoma.

Collaboration


Dive into the Nicolò Mauro's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge