Nicolo Riggi
University of Lausanne
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nicolo Riggi.
Science | 2013
Mario L. Suvà; Nicolo Riggi; Bradley E. Bernstein
The demonstration of induced pluripotency and direct lineage conversion has led to remarkable insights regarding the roles of transcription factors and chromatin regulators in mediating cell state transitions. Beyond its considerable implications for regenerative medicine, this body of work is highly relevant to multiple stages of oncogenesis, from the initial cellular transformation to the hierarchical organization of established malignancies. Here, we review conceptual parallels between the respective biological phenomena, highlighting important interrelationships among transcription factors, chromatin regulators, and preexisting epigenetic states. The shared mechanisms provide insights into oncogenic transformation, tumor heterogeneity, and cancer stem cell models.
Cancer Research | 2009
Mario-Luca Suvà; Nicolo Riggi; Michalina Janiszewska; Ivan Radovanovic; Paolo Provero; Jean-Christophe Stehle; Karine Baumer; Marie-Aude Le Bitoux; Denis Marino; Luisa Cironi; Victor E. Marquez; Virginie Clement; Ivan Stamenkovic
Overexpression of the polycomb group protein enhancer of zeste homologue 2 (EZH2) occurs in diverse malignancies, including prostate cancer, breast cancer, and glioblastoma multiforme (GBM). Based on its ability to modulate transcription of key genes implicated in cell cycle control, DNA repair, and cell differentiation, EZH2 is believed to play a crucial role in tissue-specific stem cell maintenance and tumor development. Here, we show that targeted pharmacologic disruption of EZH2 by the S-adenosylhomocysteine hydrolase inhibitor 3-deazaneplanocin A (DZNep), or its specific downregulation by short hairpin RNA (shRNA), strongly impairs GBM cancer stem cell (CSC) self-renewal in vitro and tumor-initiating capacity in vivo. Using genome-wide expression analysis of DZNep-treated GBM CSCs, we found the expression of c-myc, recently reported to be essential for GBM CSCs, to be strongly repressed upon EZH2 depletion. Specific shRNA-mediated downregulation of EZH2 in combination with chromatin immunoprecipitation experiments revealed that c-myc is a direct target of EZH2 in GBM CSCs. Taken together, our observations provide evidence that direct transcriptional regulation of c-myc by EZH2 may constitute a novel mechanism underlying GBM CSC maintenance and suggest that EZH2 may be a valuable new therapeutic target for GBM management.
Cancer Research | 2009
Mario-Luca Suvà; Nicolo Riggi; Jean-Christophe Stehle; Karine Baumer; Stéphane Tercier; Jean-Marc Joseph; Domizio Suva; Virginie Clement; Paolo Provero; Luisa Cironi; Maria-Chiara Osterheld; Louis Guillou; Ivan Stamenkovic
Cancer stem cells that display tumor-initiating properties have recently been identified in several distinct types of malignancies, holding promise for more effective therapeutic strategies. However, evidence of such cells in sarcomas, which include some of the most aggressive and therapy-resistant tumors, has not been shown to date. Here, we identify and characterize cancer stem cells in Ewings sarcoma family tumors (ESFT), a highly aggressive pediatric malignancy believed to be of mesenchymal stem cell (MSC) origin. Using magnetic bead cell separation of primary ESFT, we have isolated a subpopulation of CD133+ tumor cells that display the capacity to initiate and sustain tumor growth through serial transplantation in nonobese diabetic/severe combined immunodeficiency mice, re-establishing at each in vivo passage the parental tumor phenotype and hierarchical cell organization. Consistent with the plasticity of MSCs, in vitro differentiation assays showed that the CD133+ cell population retained the ability to differentiate along adipogenic, osteogenic, and chondrogenic lineages. Quantitative real-time PCR analysis of genes implicated in stem cell maintenance revealed that CD133+ ESFT cells express significantly higher levels of OCT4 and NANOG than their CD133- counterparts. Taken together, our observations provide the first identification of ESFT cancer stem cells and demonstration of their MSC properties, a critical step towards a better biological understanding and rational therapeutic targeting of these tumors.
Cancer Research | 2008
Nicolo Riggi; Mario-Luca Suvà; Domizio Suva; Luisa Cironi; Paolo Provero; Stéphane Tercier; Jean-Marc Joseph; Jean-Christophe Stehle; Karine Baumer; Vincent Kindler; Ivan Stamenkovic
Ewings sarcoma family tumors (ESFT) express the EWS-FLI-1 fusion gene generated by the chromosomal translocation t(11;22)(q24;q12). Expression of the EWS-FLI-1 fusion protein in a permissive cellular environment is believed to play a key role in ESFT pathogenesis. However, EWS-FLI-1 induces growth arrest or apoptosis in differentiated primary cells, and the identity of permissive primary human cells that can support its expression and function has until now remained elusive. Here we show that expression of EWS-FLI-1 in human mesenchymal stem cells (hMSC) is not only stably maintained without inhibiting proliferation but also induces a gene expression profile bearing striking similarity to that of ESFT, including genes that are among the highest ESFT discriminators. Expression of EWS-FLI-1 in hMSCs may recapitulate the initial steps of Ewings sarcoma development, allowing identification of genes that play an important role early in its pathogenesis. Among relevant candidate transcripts induced by EWS-FLI-1 in hMSCs, we found the polycomb group gene EZH2, which we show to play a critical role in Ewings sarcoma growth. These observations are consistent with our recent findings using mouse mesenchymal progenitor cells and provide compelling evidence that hMSCs are candidate cells of origin of ESFT.
Nature | 2016
Itay Tirosh; Andrew S. Venteicher; Christine Hebert; Leah E. Escalante; Anoop P. Patel; Keren Yizhak; Jonathan M. Fisher; Christopher Rodman; Christopher Mount; Mariella G. Filbin; Cyril Neftel; Niyati Desai; Jackson Nyman; Benjamin Izar; Christina C. Luo; Joshua M. Francis; Aanand A. Patel; Maristela L. Onozato; Nicolo Riggi; Kenneth J. Livak; Dave Gennert; Rahul Satija; Brian V. Nahed; William T. Curry; Robert L. Martuza; Ravindra Mylvaganam; A. John Iafrate; Matthew P. Frosch; Todd R. Golub; Miguel Rivera
Although human tumours are shaped by the genetic evolution of cancer cells, evidence also suggests that they display hierarchies related to developmental pathways and epigenetic programs in which cancer stem cells (CSCs) can drive tumour growth and give rise to differentiated progeny. Yet, unbiased evidence for CSCs in solid human malignancies remains elusive. Here we profile 4,347 single cells from six IDH1 or IDH2 mutant human oligodendrogliomas by RNA sequencing (RNA-seq) and reconstruct their developmental programs from genome-wide expression signatures. We infer that most cancer cells are differentiated along two specialized glial programs, whereas a rare subpopulation of cells is undifferentiated and associated with a neural stem cell expression program. Cells with expression signatures for proliferation are highly enriched in this rare subpopulation, consistent with a model in which CSCs are primarily responsible for fuelling the growth of oligodendroglioma in humans. Analysis of copy number variation (CNV) shows that distinct CNV sub-clones within tumours display similar cellular hierarchies, suggesting that the architecture of oligodendroglioma is primarily dictated by developmental programs. Subclonal point mutation analysis supports a similar model, although a full phylogenetic tree would be required to definitively determine the effect of genetic evolution on the inferred hierarchies. Our single-cell analyses provide insight into the cellular architecture of oligodendrogliomas at single-cell resolution and support the cancer stem cell model, with substantial implications for disease management.
Cancer Research | 2006
Nicolo Riggi; Luisa Cironi; Paolo Provero; Mario-Luca Suvà; Jean-Christophe Stehle; Karine Baumer; Louis Guillou; Ivan Stamenkovic
A subset of sarcomas is associated with specific chromosomal translocations that give rise to fusion genes believed to participate in transformation and oncogenesis. Identification of the primary cell environment that provides permissiveness for the oncogenic potential of these fusion genes is essential to understand sarcoma pathogenesis. We have recently shown that expression of the EWS-FLI-1 fusion protein in primary mesenchymal progenitor cells (MPCs) suffices to develop Ewings sarcoma-like tumors in mice. Because most sarcomas bearing unique chromosomal translocations are believed to originate from common progenitor cells, and because MPCs populate most organs, we expressed the sarcoma-associated fusion proteins FUS/TLS-CHOP, EWS-ATF1, and SYT-SSX1 in MPCs and tested the tumorigenic potential of these cells in vivo. Whereas expression of EWS-ATF1 and SYT-SSX1 failed to transform MPCs, FUS-CHOP-expressing cells formed tumors resembling human myxoid liposarcoma. Transcription profile analysis of these tumors revealed induction of transcripts known to be associated with myxoid liposarcoma and novel candidate genes, including PDGFA, whose expression was confirmed in human tumor samples. MPC(FUS-CHOP) and the previously described MPC(EWS-FLI-1) tumors displayed distinct transcription profiles, consistent with the different target gene repertoires of their respective fusion proteins. Unexpectedly, a set of genes implicated in cell survival and adhesion displayed similar behavior in the two tumors, suggesting events that may be common to primary MPC transformation. Taken together, our observations suggest that expression of FUS-CHOP may be the initiating event in myxoid liposarcoma pathogenesis, and that MPCs may constitute one cell type from which these tumors originate.
The Journal of Pathology | 2007
Nicolo Riggi; Luisa Cironi; Mario-Luca Suvà; Ivan Stamenkovic
Sarcomas comprise some of the most aggressive solid tumours that, for the most part, respond poorly to chemo‐ and radiation therapy and are associated with a sombre prognosis when surgical removal cannot be performed or is incomplete. Partly because of their lower frequency, sarcomas have not been studied as intensively as carcinomas and haematopoietic malignancies, and the molecular mechanisms that underlie their pathogenesis are only beginning to be understood. Even more enigmatic is the identity of the primary cells from which these tumours originate. Over the past 25 years, however, several non‐random chromosomal translocations have been found to be associated with defined sarcomas. Each of these translocations generates a fusion gene believed to be directly related to the pathogenesis of the sarcoma in which it is expressed. The corresponding fusion proteins provide a unique tool not only to study the process of sarcoma development, but also to identify cells that are permissive for their putative oncogenic properties. This is the first of two reviews that cover the mechanisms whereby specific fusion/mutant gene products participate in sarcoma development and the cellular context that may provide the necessary permissiveness for their expression and oncogenicity. Part 1 of the review focuses on sarcomas that express fusion genes containing TET gene family products, including EWSR1, TLS/FUS, and TAFII68. Part 2 (J Pathol 2007; DOI: 10.1002/path.2008) summarizes our current understanding of the genetic and cellular origins of sarcomas expressing fusion genes exclusive of TET family members; it also covers soft tissue malignancies harbouring specific mutations in RTK‐encoding genes, the prototype of which are gastrointestinal stromal tumours (GIST). Copyright
Genes & Development | 2012
Michalina Janiszewska; Mario L. Suvà; Nicolo Riggi; Riekelt H. Houtkooper; Johan Auwerx; Virginie Clément-Schatlo; Ivan Radovanovic; Esther Rheinbay; Paolo Provero; Ivan Stamenkovic
Growth of numerous cancer types is believed to be driven by a subpopulation of poorly differentiated cells, often referred to as cancer stem cells (CSCs), that have the capacity for self-renewal, tumor initiation, and generation of nontumorigenic progeny. Despite their potentially key role in tumor establishment and maintenance, the energy requirements of these cells and the mechanisms that regulate their energy production are unknown. Here, we show that the oncofetal insulin-like growth factor 2 mRNA-binding protein 2 (IMP2, IGF2BP2) regulates oxidative phosphorylation (OXPHOS) in primary glioblastoma (GBM) sphere cultures (gliomaspheres), an established in vitro model for CSC expansion. We demonstrate that IMP2 binds several mRNAs that encode mitochondrial respiratory chain complex subunits and that it interacts with complex I (NADH:ubiquinone oxidoreductase) proteins. Depletion of IMP2 in gliomaspheres decreases their oxygen consumption rate and both complex I and complex IV activity that results in impaired clonogenicity in vitro and tumorigenicity in vivo. Importantly, inhibition of OXPHOS but not of glycolysis abolishes GBM cell clonogenicity. Our observations suggest that gliomaspheres depend on OXPHOS for their energy production and survival and that IMP2 expression provides a key mechanism to ensure OXPHOS maintenance by delivering respiratory chain subunit-encoding mRNAs to mitochondria and contributing to complex I and complex IV assembly.
PLOS ONE | 2008
Luisa Cironi; Nicolo Riggi; Paolo Provero; Natalie Wolf; Mario-Luca Suvà; Domizio Suva; Vincent Kindler; Ivan Stamenkovic
Background The EWS-FLI-1 fusion protein is associated with 85–90% of Ewings sarcoma family tumors (ESFT), the remaining 10–15% of cases expressing chimeric genes encoding EWS or FUS fused to one of several ets transcription factor family members, including ERG-1, FEV, ETV1 and ETV6. ESFT are dependent on insulin-like growth factor-1 (IGF-1) for growth and survival and recent evidence suggests that mesenchymal progenitor/stem cells constitute a candidate ESFT origin. Methodology/Principal Findings To address the functional relatedness between ESFT-associated fusion proteins, we compared mouse progenitor cell (MPC) permissiveness for EWS-FLI-1, EWS-ERG and FUS-ERG expression and assessed the corresponding expression profile changes. Whereas all MPC isolates tested could stably express EWS-FLI-1, only some sustained stable EWS-ERG expression and none could express FUS-ERG for more than 3–5 days. Only 14% and 4% of the total number of genes that were respectively induced and repressed in MPCs by the three fusion proteins were shared. However, all three fusion proteins, but neither FLI-1 nor ERG-1 alone, activated the IGF1 promoter and induced IGF1 expression. Conclusion/Significance Whereas expression of different ESFT-associated fusion proteins may require distinct cellular microenvironments and induce transcriptome changes of limited similarity, IGF1 induction may provide one common mechanism for their implication in ESFT pathogenesis.
Cancer Cell | 2014
Nicolo Riggi; Birgit Knoechel; Shawn M. Gillespie; Esther Rheinbay; Gaylor Boulay; Mario L. Suvà; Nikki Rossetti; Wannaporn E. Boonseng; Ozgur Oksuz; Edward B. Cook; Aurélie Formey; Anoop P. Patel; Melissa Gymrek; Vishal Thapar; Vikram Deshpande; David T. Ting; Francis J. Hornicek; G. Petur Nielsen; Ivan Stamenkovic; Martin J. Aryee; Bradley E. Bernstein; Miguel Rivera
The aberrant transcription factor EWS-FLI1 drives Ewing sarcoma, but its molecular function is not completely understood. We find that EWS-FLI1 reprograms gene regulatory circuits in Ewing sarcoma by directly inducing or repressing enhancers. At GGAA repeat elements, which lack evolutionary conservation and regulatory potential in other cell types, EWS-FLI1 multimers induce chromatin opening and create de novo enhancers that physically interact with target promoters. Conversely, EWS-FLI1 inactivates conserved enhancers containing canonical ETS motifs by displacing wild-type ETS transcription factors. These divergent chromatin-remodeling patterns repress tumor suppressors and mesenchymal lineage regulators while activating oncogenes and potential therapeutic targets, such as the kinase VRK1. Our findings demonstrate how EWS-FLI1 establishes an oncogenic regulatory program governing both tumor survival and differentiation.