Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nidal Boulos is active.

Publication


Featured researches published by Nidal Boulos.


Cancer Cell | 2016

Medulloblastoma Genotype Dictates Blood Brain Barrier Phenotype.

Timothy N. Phoenix; Deanna Patmore; Scott Boop; Nidal Boulos; Megan O. Jacus; Yogesh T. Patel; Martine F. Roussel; David Finkelstein; Liliana Goumnerova; Sébastien Perreault; Elizabeth Wadhwa; Yoon-Jae Cho; Clinton F. Stewart; Richard J. Gilbertson

The childhood brain tumor, medulloblastoma, includes four subtypes with very different prognoses. Here, we show that paracrine signals driven by mutant β-catenin in WNT-medulloblastoma, an essentially curable form of the disease, induce an aberrant fenestrated vasculature that permits the accumulation of high levels of intra-tumoral chemotherapy and a robust therapeutic response. In contrast, SHH-medulloblastoma, a less curable disease subtype, contains an intact blood brain barrier, rendering this tumor impermeable and resistant to chemotherapy. The medulloblastoma-endothelial cell paracrine axis can be manipulated in vivo, altering chemotherapy permeability and clinical response. Thus, medulloblastoma genotype dictates tumor vessel phenotype, explaining in part the disparate prognoses among medulloblastoma subtypes and suggesting an approach to enhance the chemoresponsiveness of other brain tumors.


Drug Metabolism and Disposition | 2011

Whole-Body Physiologically Based Pharmacokinetic Model for Nutlin-3a in Mice after Intravenous and Oral Administration

Fan Zhang; Michael Tagen; Stacy L. Throm; Jeremy P. Mallari; Laura Miller; R. Kiplin Guy; Michael A. Dyer; Richard T. Williams; Martine F. Roussel; Katie Nemeth; Fangyi Zhu; Jiakun Zhang; Min Lu; John C. Panetta; Nidal Boulos; Clinton F. Stewart

Nutlin-3a is an MDM2 inhibitor that is under investigation in preclinical models for a variety of pediatric malignancies, including retinoblastoma, rhabdomyosarcoma, neuroblastoma, and leukemia. We used physiologically based pharmacokinetic (PBPK) modeling to characterize the disposition of nutlin-3a in the mouse. Plasma protein binding and blood partitioning were assessed by in vitro studies. After intravenous (10 and 20 mg/kg) and oral (50, 100, and 200 mg/kg) dosing, tissue concentrations of nutlin-3a were determined in plasma, liver, spleen, intestine, muscle, lung, adipose, bone marrow, adrenal gland, brain, retina, and vitreous fluid. The PBPK model was simultaneously fit to all pharmacokinetic data using NONMEM. Nutlin-3a exhibited nonlinear binding to murine plasma proteins, with the unbound fraction ranging from 0.7 to 11.8%. Nutlin-3a disposition was characterized by rapid absorption with peak plasma concentrations at approximately 2 h and biphasic elimination consistent with a saturable clearance process. The final PBPK model successfully described the plasma and tissue disposition of nutlin-3a. Simulations suggested high bioavailability, rapid attainment of steady state, and little accumulation when administered once or twice daily at dosages up to 400 mg/kg. The final model was used to perform simulations of unbound tissue concentrations to determine which dosing regimens are appropriate for preclinical models of several pediatric malignancies.


Journal of Natural Products | 2014

UPLC-MS-ELSD-PDA as a powerful dereplication tool to facilitate compound identification from small-molecule natural product libraries.

Jin Yang; Qian Liang; Mei Wang; Cynthia Jeffries; David C. Smithson; Ying Tu; Nidal Boulos; Melissa R. Jacob; Anang A. Shelat; Yunshan Wu; Ranga Rao Ravu; Richard J. Gilbertson; Mitchell A. Avery; Ikhlas A. Khan; Larry A. Walker; R. Kiplin Guy; Xing-Cong Li

The generation of natural product libraries containing column fractions, each with only a few small molecules, using a high-throughput, automated fractionation system, has made it possible to implement an improved dereplication strategy for selection and prioritization of leads in a natural product discovery program. Analysis of databased UPLC-MS-ELSD-PDA information of three leads from a biological screen employing the ependymoma cell line EphB2-EPD generated details on the possible structures of active compounds present. The procedure allows the rapid identification of known compounds and guides the isolation of unknown compounds of interest. Three previously known flavanone-type compounds, homoeriodictyol (1), hesperetin (2), and sterubin (3), were identified in a selected fraction derived from the leaves of Eriodictyon angustifolium. The lignan compound deoxypodophyllotoxin (8) was confirmed to be an active constituent in two lead fractions derived from the bark and leaves of Thuja occidentalis. In addition, two new but inactive labdane-type diterpenoids with an uncommon triol side chain were also identified as coexisting with deoxypodophyllotoxin in a lead fraction from the bark of T. occidentalis. Both diterpenoids were isolated in acetylated form, and their structures were determined as 14S,15-diacetoxy-13R-hydroxylabd-8(17)-en-19-oic acid (9) and 14R,15-diacetoxy-13S-hydroxylabd-8(17)-en-19-oic acid (10), respectively, by spectroscopic data interpretation and X-ray crystallography. This work demonstrates that a UPLC-MS-ELSD-PDA database produced during fractionation may be used as a powerful dereplication tool to facilitate compound identification from chromatographically tractable small-molecule natural product libraries.


Nature Genetics | 2015

An in vivo screen identifies ependymoma oncogenes and tumor-suppressor genes

Kumarasamypet M. Mohankumar; David S. Currle; Elsie White; Nidal Boulos; Jason Dapper; Christopher Eden; Birgit Nimmervoll; Radhika Thiruvenkatam; Michele C. Connelly; Tanya A. Kranenburg; Geoffrey Neale; Scott R. Olsen; Yong-Dong Wang; David Finkelstein; Karen Wright; Kirti Gupta; David W. Ellison; Arzu Onar Thomas; Richard J. Gilbertson

Cancers are characterized by non-random chromosome copy number alterations that presumably contain oncogenes and tumor-suppressor genes (TSGs). The affected loci are often large, making it difficult to pinpoint which genes are driving the cancer. Here we report a cross-species in vivo screen of 84 candidate oncogenes and 39 candidate TSGs, located within 28 recurrent chromosomal alterations in ependymoma. Through a series of mouse models, we validate eight new ependymoma oncogenes and ten new ependymoma TSGs that converge on a small number of cell functions, including vesicle trafficking, DNA modification and cholesterol biosynthesis, identifying these as potential new therapeutic targets.


Oncogene | 2015

Orthotopic models of pediatric brain tumors in zebrafish

Christopher Eden; Bensheng Ju; Mohankumar Murugesan; Timothy N. Phoenix; Birgit Nimmervoll; Yiai Tong; David W. Ellison; David Finkelstein; Karen Wright; Nidal Boulos; Jason Dapper; Radhika Thiruvenkatam; Charles A. Lessman; Michael R. Taylor; Richard J. Gilbertson

High-throughput screens (HTS) of compound toxicity against cancer cells can identify thousands of potential new drug-leads. But only limited numbers of these compounds can progress to expensive and labor-intensive efficacy studies in mice, creating a ‘bottle neck’ in the drug development pipeline. Approaches that triage drug-leads for further study are greatly needed. Here we provide an intermediary platform between HTS and mice by adapting mouse models of pediatric brain tumors to grow as orthotopic xenografts in the brains of zebrafish. Freshly isolated mouse ependymoma, glioma and choroid plexus carcinoma cells expressing red fluorescence protein were conditioned to grow at 34 °C. Conditioned tumor cells were then transplanted orthotopically into the brains of zebrafish acclimatized to ambient temperatures of 34 °C. Live in vivo fluorescence imaging identified robust, quantifiable and reproducible brain tumor growth as well as spinal metastasis in zebrafish. All tumor xenografts in zebrafish retained the histological characteristics of the corresponding parent mouse tumor and efficiently recruited fish endothelial cells to form a tumor vasculature. Finally, by treating zebrafish harboring ERBB2-driven gliomas with an appropriate cytotoxic chemotherapy (5-fluorouracil) or tyrosine kinase inhibitor (erlotinib), we show that these models can effectively assess drug efficacy. Our data demonstrate, for the first time, that mouse brain tumors can grow orthotopically in fish and serve as a platform to study drug efficacy. As large cohorts of brain tumor-bearing zebrafish can be generated rapidly and inexpensively, these models may serve as a powerful tool to triage drug-leads from HTS for formal efficacy testing in mice.


Journal of Experimental Medicine | 2014

Co-targeting of convergent nucleotide biosynthetic pathways for leukemia eradication

David Nathanson; Amanda L. Armijo; Michelle Tom; Zheng Li; Elizabeth Dimitrova; Wayne R. Austin; Julian Nomme; Dean O. Campbell; Lisa Ta; Thuc M. Le; Jason T. Lee; Ryan Darvish; Ari Gordin; Liu Wei; Hsiang I. Liao; Moses Q. Wilks; Colette Martin; Saman Sadeghi; Jennifer M. Murphy; Nidal Boulos; Michael E. Phelps; Kym F. Faull; Harvey R. Herschman; Michael E. Jung; Johannes Czernin; Arnon Lavie; Caius G. Radu

Co-targeting of both de novo and salvage pathways for dCTP biosynthesis shows efficacy in T-ALL and B-ALL.


Neuro-oncology | 2015

Phase I study of 5-fluorouracil in children and young adults with recurrent ependymoma

Karen Wright; Vinay M. Daryani; David C. Turner; Arzu Onar-Thomas; Nidal Boulos; Brent A. Orr; Richard J. Gilbertson; Clinton F. Stewart; Amar Gajjar

BACKGROUND We report a phase I study to examine the pharmacokinetics, safety, and recommended dosage of weekly intravenous bolus 5-fluorouracil (5-FU) in children and young adults with recurrent ependymoma. METHODS Patients 22 years of age or less with recurrent ependymoma were treated with bolus dosage 5-FU weekly for 4 weeks followed by a 2-week rest period, defining one cycle. Patients could continue on therapy for 16 cycles. The starting 5-FU dosage was 500 mg/m(2). Dose-limiting toxicity was determined after one cycle. Patients were initially enrolled according to a rolling-6 design; subsequent dose re-escalation phase was based on a 3 + 3 design. RESULTS We treated patients at 400 (n = 6), 500 (n = 15), and 650 (n = 5) mg/m(2), with de-escalation due to toxicity. Twenty-three of twenty-six patients enrolled were evaluable. Five patients experienced grade 4 neutropenia (n = 2: 650 mg/m(2); n = 3: 500 mg/m(2)). One patient experienced grade 3 diarrhea. At 500 mg/m(2), the median 5-FU maximal concentration, AUC0-∞, and alpha half-life were 825 µM, 205 µM × h, and 9.9 min, respectively. Interim analysis revealed an association between hematologic toxicity and prior number of chemotherapeutic regimens (P = .03). The study was amended to re-escalate the dosage in a less heavily pretreated cohort of patients. CONCLUSIONS These phase I clinical data provide initial pharmacokinetic parameters to describe i.v. bolus 5-FU disposition in children with recurrent ependymoma. Tumor exposures effective in preclinical testing can be achieved with tolerable bolus dosages in patients. Bolus 5-FU is well tolerated and possesses antitumor activity.


European Journal of Pharmaceutical Sciences | 2014

Deriving therapies for children with primary CNS tumors using pharmacokinetic modeling and simulation of cerebral microdialysis data.

Megan O. Jacus; Stacy L. Throm; David C. Turner; Yogesh T. Patel; Burgess B. Freeman; Marie Morfouace; Nidal Boulos; Clinton F. Stewart

The treatment of children with primary central nervous system (CNS) tumors continues to be a challenge despite recent advances in technology and diagnostics. In this overview, we describe our approach for identifying and evaluating active anticancer drugs through a process that enables rational translation from the lab to the clinic. The preclinical approach we discuss uses tumor subgroup-specific models of pediatric CNS tumors, cerebral microdialysis sampling of tumor extracellular fluid (tECF), and pharmacokinetic modeling and simulation to overcome challenges that currently hinder researchers in this field. This approach involves performing extensive systemic (plasma) and target site (CNS tumor) pharmacokinetic studies. Pharmacokinetic modeling and simulation of the data derived from these studies are then used to inform future decisions regarding drug administration, including dosage and schedule. Here, we also present how our approach was used to examine two FDA approved drugs, simvastatin and pemetrexed, as candidates for new therapies for pediatric CNS tumors. We determined that due to unfavorable pharmacokinetic characteristics and insufficient concentrations in tumor tissue in a mouse model of ependymoma, simvastatin would not be efficacious in further preclinical trials. In contrast to simvastatin, pemetrexed was advanced to preclinical efficacy studies after our studies determined that plasma exposures were similar to those in humans treated at similar tolerable dosages and adequate unbound concentrations were found in tumor tissue of medulloblastoma-bearing mice. Generally speaking, the high clinical failure rates for CNS drug candidates can be partially explained by the fact that therapies are often moved into clinical trials without extensive and rational preclinical studies to optimize the transition. Our approach addresses this limitation by using pharmacokinetic and pharmacodynamic modeling of data generated from appropriate in vivo models to support the rational testing and usage of innovative therapies in children with CNS tumors.


Journal of Biomolecular Screening | 2014

A Screening-Based Approach to Circumvent Tumor Microenvironment-Driven Intrinsic Resistance to BCR-ABL+ Inhibitors in Ph+ Acute Lymphoblastic Leukemia

Harpreet Singh; Anang A. Shelat; Amandeep Singh; Nidal Boulos; Richard T. Williams; R. Kiplin Guy

Signaling by the BCR-ABL fusion kinase drives Philadelphia chromosome–positive acute lymphoblastic leukemia (Ph+ ALL) and chronic myelogenous leukemia (CML). Despite their clinical activity in many patients with CML, the BCR-ABL kinase inhibitors (BCR-ABL-KIs) imatinib, dasatinib, and nilotinib provide only transient leukemia reduction in patients with Ph+ ALL. While host-derived growth factors in the leukemia microenvironment have been invoked to explain this drug resistance, their relative contribution remains uncertain. Using genetically defined murine Ph+ ALL cells, we identified interleukin 7 (IL-7) as the dominant host factor that attenuates response to BCR-ABL-KIs. To identify potential combination drugs that could overcome this IL-7–dependent BCR-ABL-KI–resistant phenotype, we screened a small-molecule library including Food and Drug Administration–approved drugs. Among the validated hits, the well-tolerated antimalarial drug dihydroartemisinin (DHA) displayed potent activity in vitro and modest in vivo monotherapy activity against engineered murine BCR-ABL-KI–resistant Ph+ ALL. Strikingly, cotreatment with DHA and dasatinib in vivo strongly reduced primary leukemia burden and improved long-term survival in a murine model that faithfully captures the BCR-ABL-KI–resistant phenotype of human Ph+ ALL. This cotreatment protocol durably cured 90% of treated animals, suggesting that this cell-based screening approach efficiently identified drugs that could be rapidly moved to human clinical testing.


Clinical Cancer Research | 2018

Establishing a Preclinical Multidisciplinary Board for Brain Tumors

Birgit Nimmervoll; Nidal Boulos; Brandon Bianski; Jason Dapper; Michael DeCuypere; Anang A. Shelat; Sabrina Terranova; Hope Elizabeth Terhune; Amar Gajjar; Yogesh T. Patel; Burgess B. Freeman; Arzu Onar-Thomas; Clinton F. Stewart; Martine F. Roussel; R. Kiplin Guy; Thomas E. Merchant; Christopher Calabrese; Karen Wright; Richard J. Gilbertson

Purpose: Curing all children with brain tumors will require an understanding of how each subtype responds to conventional treatments and how best to combine existing and novel therapies. It is extremely challenging to acquire this knowledge in the clinic alone, especially among patients with rare tumors. Therefore, we developed a preclinical brain tumor platform to test combinations of conventional and novel therapies in a manner that closely recapitulates clinic trials. Experimental Design: A multidisciplinary team was established to design and conduct neurosurgical, fractionated radiotherapy and chemotherapy studies, alone or in combination, in accurate mouse models of supratentorial ependymoma (SEP) subtypes and choroid plexus carcinoma (CPC). Extensive drug repurposing screens, pharmacokinetic, pharmacodynamic, and efficacy studies were used to triage active compounds for combination preclinical trials with “standard-of-care” surgery and radiotherapy. Results: Mouse models displayed distinct patterns of response to surgery, irradiation, and chemotherapy that varied with tumor subtype. Repurposing screens identified 3-hour infusions of gemcitabine as a relatively nontoxic and efficacious treatment of SEP and CPC. Combination neurosurgery, fractionated irradiation, and gemcitabine proved significantly more effective than surgery and irradiation alone, curing one half of all animals with aggressive forms of SEP. Conclusions: We report a comprehensive preclinical trial platform to assess the therapeutic activity of conventional and novel treatments among rare brain tumor subtypes. It also enables the development of complex, combination treatment regimens that should deliver optimal trial designs for clinical testing. Postirradiation gemcitabine infusion should be tested as new treatments of SEP and CPC. Clin Cancer Res; 24(7); 1654–66. ©2018 AACR.

Collaboration


Dive into the Nidal Boulos's collaboration.

Top Co-Authors

Avatar

Richard J. Gilbertson

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Clinton F. Stewart

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Yogesh T. Patel

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richard T. Williams

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Burgess B. Freeman

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Jason Dapper

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Megan O. Jacus

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

R. Kiplin Guy

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Anang A. Shelat

St. Jude Children's Research Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge