Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Niels Agerbirk is active.

Publication


Featured researches published by Niels Agerbirk.


Phytochemistry | 2012

Glucosinolate structures in evolution.

Niels Agerbirk; Carl Erik Olsen

By 2000, around 106 natural glucosinolates (GSLs) were probably documented. In the past decade, 26 additional natural GSL structures have been elucidated and documented. Hence, the total number of documented GSLs from nature by 2011 can be estimated to around 132. A considerable number of additional suggested structures are concluded not to be sufficiently documented. In many cases, NMR spectroscopy would have provided the missing structural information. Of the GSLs documented in the past decade, several are of previously unexpected structures and occur at considerable levels. Most originate from just four species: Barbarea vulgaris, Arabidopsis thaliana, Eruca sativa and Isatis tinctoria. Acyl derivatives of known GSLs comprised 15 of the 26 newly documented structures, while the remaining exhibited new substitution patterns or chain length, or contained a mercapto group or related thio-functionality. GSL identification methods are reviewed, and the importance of using authentic references and structure-sensitive detection methods such as MS and NMR is stressed, especially when species with relatively unknown chemistry are analyzed. An example of qualitative GSL analysis is presented with experimental details (group separation and HPLC of both intact and desulfated GSLs, detection and structure determination by UV, MS, NMR and susceptibility to myrosinase) with emphasis on the use of NMR for structure elucidation of even minor GSLs and GSL hydrolysis products. The example includes identification of a novel GSL, (R)-2-hydroxy-2-(3-hydroxyphenyl)ethylglucosinolate. Recent investigations of GSL evolution, based on investigations of species with well established phylogeny, are reviewed. From the relatively few such investigations, it is already clear that GSL profiles are regularly subject to evolution. This result is compatible with natural selection for specific GSL side chains. The probable existence of structure-specific GSL catabolism in intact plants suggests that biochemical evolution of GSLs has more complex implications than the mere liberation of a different hydrolysis product upon tissue disruption.


Phytochemistry Reviews | 2009

Indole glucosinolate breakdown and its biological effects

Niels Agerbirk; Martin de Vos; Jae Hak Kim; Georg Jander

Most species in the Brassicaceae produce one or more indole glucosinolates. In addition to the parent indol-3-ylmethylglucosinolate (IMG), other commonly encountered indole glucosinolates are 1-methoxyIMG, 4-hydroxyIMG, and 4-methoxyIMG. Upon tissue disruption, enzymatic hydrolysis of IMG produces an unstable aglucone, which reacts rapidly to form indole-3-acetonitrile and indol-3-ylmethyl isothiocyanate. The isothiocyanate, in turn, can react with water, ascorbate, glutathione, amino acids, and other plant metabolites to produce a variety of physiologically active indole compounds. Myrosinase-initiated breakdown of the substituted indole glucosinolates proceeds in a similar manner to that of IMG. Induction of indole glucosinolate production in response to biotic stress, experiments with mutant plants, and artificial diet assays suggest a significant role for indole glucosinolates in plant defense. However, some crucifer-feeding specialist herbivores recognize indole glucosinolates and their breakdown products as oviposition and/or feeding stimulants. In mammalian diets, IMG can have both beneficial and deleterious effects. Most IMG breakdown products induce the synthesis of phase 1 detoxifying enzymes, which may in some cases prevent carcinogenesis, but in other cases promote carcinogenesis. Recent advances in indole glucosinolate research have been fueled by their occurrence in the well-studied model plant Arabidopsis thaliana. Knowledge gained from genetic and biochemical experiments with A. thaliana can be applied to gain new insight into the ecological and nutritional properties of indole glucosinolates in other plant species.


Journal of Chemical Ecology | 2001

Sequestration of Host Plant Glucosinolates in the Defensive Hemolymph of the Sawfly Athalia rosae

Caroline Müller; Niels Agerbirk; Carl Erik Olsen; Jean-Luc Boevé; Urs Schaffner; Paul M. Brakefield

Interactions between insects and glucosinolate-containing plant species have been investigated for a long time. Although the glucosinolate–myrosinase system is believed to act as a defense mechanism against generalist herbivores and fungi, several specialist insects use these secondary metabolites for host plant finding and acceptance and can handle them physiologically. However, sequestration of glucosinolates in specialist herbivores has been less well studied. Larvae of the turnip sawfly Athalia rosae feed on several glucosinolate-containing plant species. When larvae are disturbed by antagonists, they release one or more small droplets of hemolymph from their integument. This “reflex bleeding” is used as a defense mechanism. Specific glucosinolate analysis, by conversion to desulfoglucosinolates and analysis of these by high-performance liquid chromatography coupled to diode array UV spectroscopy and mass spectrometry, revealed that larvae incorporate and concentrate the plants characteristic glucosinolates from their hosts. Extracts of larvae that were reared on Sinapis alba contained sinalbin, even when the larvae were first starved for 22 hr and, thus, had empty guts. Hemolymph was analyzed from larvae that were reared on either S. alba, Brassica nigra, or Barbarea stricta. Leaves were analyzed from the same plants the larvae had fed on. Sinalbin (from S. alba), sinigrin (B. nigra), or glucobarbarin and glucobrassicin (B. stricta) were present in leaves in concentrations less than 1 μmol/g fresh weight, while the same glucosinolates could be detected in the larvaes hemolymph in concentrations between 10 and 31 μmol/g fresh weight, except that glucobrassicin was present only as a trace. In larval feces, only trace amounts of glucosinolates (sinalbin and sinigrin) could be detected. The glucosinolates were likewise found in freshly emerged adults, showing that the sequestered phytochemicals were transferred through the pupal stage.


Phytochemistry | 2001

Seasonal variation in leaf glucosinolates and insect resistance in two types of Barbarea vulgaris ssp. arcuata.

Niels Agerbirk; Carl Erik Olsen; Jens Kvist Nielsen

Leaves from natural populations of Barbarea vulgaris ssp. arcuata (Brassicaceae) in Denmark were examined for glucosinolate content and resistance to the crucifer specialist flea beetle Phyllotreta nemorum. Two types of the plant (P- and G-type) could be recognized. Leaves of the G-type contained the glucosinolates (only side chains mentioned): (S)-2-hydroxy-2-phenylethyl- (2S), indol-3-ylmethyl- (4) and in trace amount (R)-2-hydroxy-2-phenylethyl- (2R), 2-phenylethyl- (1) and 4-methoxyindol-3-ylmethyl- (5). Leaves of the P-type were dominated by 2R and 4, and had only trace amounts of 1, 2S, and 5 but contained in addition the previously unknown (R)-2-hydroxy-2-(4-hydroxyphenyl)ethyl- (3R). The epimer, (S)-2-hydroxy-2-(4-hydroxyphenyl)ethyl- (3S) was found in populations believed to be hybrids, and in B. orthoceras. 2S, 2R, desulfo 2S,-2R, -3S and -3R were isolated and identified by NMR and MS. Acylated glucosinolates or allylglucosinolate were not detected in leaves. The glucosinolate content in August was variable, 3-46 micromol/g dry wt, but was low in most populations, 3-15 micromol/g dry wt. In general, the glucosinolate content increased during the autumn, to 35-75 micromol/g dry wt in November. The G-type was resistant to neonate larvae of Phyllotreta nemorum in August and September (survival in 3-day bioassay typically 0%), and gradually lost the resistance in October and November (survival in 3-day bioassay 40-90%), and there was no correlation between glucosinolate content and resistance. Neither did glucosinolates explain the difference in resistance between the P-type (always susceptible) and the G-type (resistant in the summer season).


Journal of Chemical Ecology | 2007

Flower vs. Leaf Feeding by Pieris brassicae: Glucosinolate-Rich Flower Tissues are Preferred and Sustain Higher Growth Rate

Renate C. Smallegange; J.J.A. van Loon; S.E. Blatt; Jeffrey A. Harvey; Niels Agerbirk; Marcel Dicke

Interactions between butterflies and caterpillars in the genus Pieris and plants in the family Brassicaceae are among the best explored in the field of insect–plant biology. However, we report here for the first time that Pieris brassicae, commonly assumed to be a typical folivore, actually prefers to feed on flowers of three Brassica nigra genotypes rather than on their leaves. First- and second-instar caterpillars were observed to feed primarily on leaves, whereas late second and early third instars migrated via the small leaves of the flower branches to the flower buds and flowers. Once flower feeding began, no further leaf feeding was observed. We investigated growth rates of caterpillars having access exclusively to either leaves of flowering plants or flowers. In addition, we analyzed glucosinolate concentrations in leaves and flowers. Late-second- and early-third-instar P. brassicae caterpillars moved upward into the inflorescences of B. nigra and fed on buds and flowers until the end of the final (fifth) instar, after which they entered into the wandering stage, leaving the plant in search of a pupation site. Flower feeding sustained a significantly higher growth rate than leaf feeding. Flowers contained levels of glucosinolates up to five times higher than those of leaves. Five glucosinolates were identified: the aliphatic sinigrin, the aromatic phenyethylglucosinolate, and three indole glucosinolates: glucobrassicin, 4-methoxyglucobrassicin, and 4-hydroxyglucobrassicin. Tissue type and genotype were the most important factors affecting levels of identified glucosinolates. Sinigrin was by far the most abundant compound in all three genotypes. Sinigrin, 4-hydroxyglucobrassicin, and phenylethylglucosinolate were present at significantly higher levels in flowers than in leaves. In response to caterpillar feeding, sinigrin levels in both leaves and flowers were significantly higher than in undamaged plants, whereas 4-hydroxyglucobrassicin leaf levels were lower. Our results show that feeding on flower tissues, containing higher concentrations of glucosinolates, provides P. brassicae with a nutritional benefit in terms of higher growth rate. This preference appears to be in contrast to published negative effects of volatile glucosinolate breakdown products on the closely related Pieris rapae.


Journal of Chemical Ecology | 2003

A Saponin Correlated with Variable Resistance of Barbarea vulgaris to the Diamondback Moth Plutella xylostella

Niels Agerbirk; Carl Erik Olsen; Bo M. Bibby; Hanne O. Frandsen; Lea D. Brown; Jens Kvist Nielsen; J. Alan A. Renwick

Two types of Barbarea vulgaris var. arcuata, the G-type and the P-type, differed in resistance to larvae of the diamondback moth (DBM) Plutella xylostella. Rosette plants of the G-type were fully resistant to the DBM when grown in a greenhouse or collected in the summer season, but leaves collected during the late fall were less resistant, as previously found for flea beetle resistance. The P-type was always susceptible. Extracts of resistant leaflets inhibited larval growth in a bioassay, and a growth-inhibiting fraction was isolated by activity-guided fractionation. A triterpenoid saponin (1) was isolated from this fraction and identified as 3-O-β-cellobiosyloleanolic acid from spectroscopic data and analysis of hydrolysis products. The decrease in resistance of the G-type in the fall was correlated with a decrease in the level of 1, from 0.6–0.9 to <0.2 μmol/g dry wt. Compound 1 was not detected in the susceptible P-type. We conclude that 1 is correlated with the variable resistance of B. vulgaris foliage to the DBM.


Phytochemistry | 2003

Glucosinolates, flea beetle resistance, and leaf pubescence as taxonomic characters in the genus Barbarea (Brassicaceae)

Niels Agerbirk; Marian Ørgaard; Jens Kvist Nielsen

Glucosinolate content of leaves and roots, diversity in leaf pubescence, and resistance to two near-isogenic lines of the flea beetle Phyllotreta nemorum with or without an R-gene, were determined for 27 accessions of 7 Barbarea taxa, i.e. B. stricta, B. orthoceras, B. intermedia, B. verna, B. vulgaris var. vulgaris, the G-type of B. vulgaris var. arcuata and the P-type of B. vulgaris var. arcuata. Four variable glucosinolate biosynthetic characters were deduced. For (formally) homophenylalanine-derived glucosinolates: (1). Presence or absence of 2-hydroxylation, and if present, R- or S-configuration of 2-hydroxylation; (2). presence or absence of p-hydroxylation; and for tryptophan-derived glucosinolates: (3). presence or absence of N-methoxyglucobrassicin; and (4). presence or absence of 1,4-dimethoxyglucobrassicin. Three phenotypes of leaf-pubescence were observed; (1). glabrous to glabrate leaves; (2). glabrous to glabrate leaves with hairs along the edge; (3). pubescent leaves. The hairs were characterized as simple by scanning electron microscopy. Full resistance to a flea beetle line (ST) was found in B. vulgaris var. vulgaris and in the G-type of var. arcuata; partial resistance was found in B. verna and B. intermedia, while the remaining taxa were fully susceptible to the ST line. All investigated Barbarea taxa were susceptible to larvae from another line containing an R-gene, indicating a similar flea beetle resistance mechanism in the three resistant species. Most Barbarea taxa could be characterized by a particular combination of the investigated characters. The most aberrant was the P-type of B. vulgaris var. arcuata, and the taxonomic status of this type should be reconsidered.


Chemoecology | 2001

Responses of the flea beetles Phyllotreta nemorum and P. cruciferae to metabolically engineered Arabidopsis thaliana with an altered glucosinolate profile

Jens Kvist Nielsen; Mads L. Hansen; Niels Agerbirk; Bent Larsen Petersen; Barbara Ann Halkier

Summary. Insects feeding on Cruciferae recognize their host plants at least partially by means of specific responses to glucosinolates. However, the effects of variations in glucosinolate levels on the acceptability of plants for specialized insects are not well understood. A survey of the literature demonstrated positive, no, as well as negative correlations between plant acceptability and glucosinolate levels. The present study took advantage of the presence of transgenic Arabidopsis thaliana plants with increased glucosinolate levels. Transgenic A. thaliana contain the CYP79A1 gene from Sorghum bicolor. This gene encodes an enzyme which converts L-tyrosine into p-hydroxyphenylacetaldoxime in the biosynthesis of cyanogenic glycosides in S. bicolor. In transgenic A. thaliana plants, endogenous enzymes convert p-hydroxyphenylacetaldoxime into p-hydroxybenzylglucosinolate (sinalbin), which is not found naturally in this plant. The introduction of CYP79A1 resulted in a four-fold increase in total glucosinolate levels in transgenic A. thaliana plants. Although these changes in glucosinolate levels were rather dramatic, they did not have any effects on the acceptability of A. thaliana for the two flea beetle species, Phyllotreta nemorum and P. cruciferae. The flea beetles did not discriminate between transgenic and wildtype plants. Furthermore, they did not discriminate between leaf discs of wildtype plants where different concentrations of p-hydroxybenzylglucosinolate had been applied topically on the leaf surface. Feeding in P. nemorum was stimulated by extremely high levels of allylglucosinolate while this compound had no effect on P. cruciferae. It is concluded that the effect of glucosinolates on adapted insects depends on the chemical or physical environment in which the glucosinolates are found.


Phytochemistry | 2008

Sinapis phylogeny and evolution of glucosinolates and specific nitrile degrading enzymes

Niels Agerbirk; Suzanne I. Warwick; Paul R. Hansen; Carl Erik Olsen

Levels of sinalbin (4-hydroxybenzylglucosinolate) and 28 other glucosinolates were determined in leaves and roots of 20 species that were either phylogenetically close to Sinapis alba, Sinapis arvensis, or Sinapis pubescens (tribe Brassiceae, Brassicaceae), or were expected to contain arylalkyl nitrilase activity. Comparison with a molecular phylogenetic tree based on ITS DNA sequences identified two separate occurrences of sinalbin. The first in a group of species related to S. alba (including members of the genera Coincya and Kremeriella); and the second in S. arvensis, nested among sinalbin deficient species. Significant 4-hydroxyphenylacetonitrile degrading enzyme activity was found in both S. alba and S. arvensis, but in S. alba the major product was the corresponding carboxylic acid, while in S. arvensis the major product was the amide. Both investigated enzyme activities, nitrilase and nitrile hydratase, were specific, accepting only certain arylacetonitriles such as 4-hydroxy and 4-methoxyphenylacetonitrile. Only the S. alba enzyme required an oxygen in para position of the substrate, as found in sinalbin. Indole-3-acetonitrile, arylcyanides, and arylpropionitriles were poor substrates. The nitrilase activity of S. alba was quantitatively comparable to that reported in the monocot Sorghum bicolor (believed to be involved in cyanogenic glycoside metabolism). Glucosinolates derived from methionine were found in all Sinapis clades. Glucosinolate patterns suggested a complex evolution of glucosinolates in the investigated species, with several apparent examples of abrupt changes in glucosinolate profiles including chain length variation and appearance of glucosinolates derived from branched-chain amino acids. NMR data for desulfated homosinalbin, 9-methylsulphonylnonylglucosinolate, 3-methylpentylglucosinolate and related glucosinolates are reported, and a facultative connection between sinalbin and specific nitrilases is suggested.


Chemoecology | 2003

Lack of sequestration of host plant glucosinolates in Pieris rapae and P. grarricae

Caroline Müller; Niels Agerbirk; Carl Erik Olsen

Summary. Sequestration of plant toxins in herbivores is often correlated with aposematic coloration and gregarious behaviour. Larvae of Pieris brassicae show these conspicuous morphological and behavioural characteristics and were thus suggested to sequester glucosinolates that are characteristic secondary metabolites of their host plants. P. rapaeare camouflaged and solitary, and are thus not expected to sequester. To test this hypothesis and to check the repeatabi-lity of a study that did report the presence of the glucosinolate sinigrin in P. brassicae, larvae were reared on three species of Brassicaceae (Sinapis alba, Brassica nigra and Barbarea stricta), and different leaf and insect samples were taken for glucosinolate analysis. The major host plant glucosinolates could only be found in traces or not at all in larval haemolymph, bled or starved larvae, faeces or pupae of both species or P. brassicae regurgitant. Haemolymph of both Pieris spp. was not rejected by the ant Myrmica rubra in dual-choice assays; the regurgitant of P. brassicae was rejected. This suggests the presence of compounds other than glucosinolates that might be sequestered in or produced by P. brassicae only. In faeces of both Pieris spp. a compound which yielded 4-hydroxybenzylcyanide (HBC) upon incubation with sulfatase was detected in high concentrations when larvae had been reared on S. alba. This compound may be derived from hydrolysis of sinalbin, the main glucosinolate of that plant. The unidentified HBC progenitor was apparently not sequestered in the two Pieris spp., and was not detected in faeces of larvae reared on B. nigra or B. stricta.

Collaboration


Dive into the Niels Agerbirk's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Søren Bak

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge