Niels Bjerg Jensen
Technical University of Denmark
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Niels Bjerg Jensen.
Fems Yeast Research | 2014
Niels Bjerg Jensen; Tomas Strucko; Kanchana Rueksomtawin Kildegaard; Florian David; Jerome Maury; Uffe Hasbro Mortensen; Jochen Förster; Jens Nielsen; Irina Borodina
Development of strains for efficient production of chemicals and pharmaceuticals requires multiple rounds of genetic engineering. In this study, we describe construction and characterization of EasyClone vector set for bakers yeast Saccharomyces cerevisiae, which enables simultaneous expression of multiple genes with an option of recycling selection markers. The vectors combine the advantage of efficient uracil excision reaction-based cloning and Cre-LoxP-mediated marker recycling system. The episomal and integrative vector sets were tested by inserting genes encoding cyan, yellow, and red fluorescent proteins into separate vectors and analyzing for co-expression of proteins by flow cytometry. Cells expressing genes encoding for the three fluorescent proteins from three integrations exhibited a much higher level of simultaneous expression than cells producing fluorescent proteins encoded on episomal plasmids, where correspondingly 95% and 6% of the cells were within a fluorescence interval of Log10 mean ± 15% for all three colors. We demonstrate that selective markers can be simultaneously removed using Cre-mediated recombination and all the integrated heterologous genes remain in the chromosome and show unchanged expression levels. Hence, this system is suitable for metabolic engineering in yeast where multiple rounds of gene introduction and marker recycling can be carried out.
Metabolic Engineering | 2015
Irina Borodina; Kanchana Rueksomtawin Kildegaard; Niels Bjerg Jensen; Thomas Blicher; Jerome Maury; Svetlana Sherstyk; Konstantin Schneider; Pedro Lamosa; Markus J. Herrgård; Inger Rosenstand; Fredrik Öberg; Jochen Förster; Jens Nielsen
Microbial fermentation of renewable feedstocks into plastic monomers can decrease our fossil dependence and reduce global CO2 emissions. 3-Hydroxypropionic acid (3HP) is a potential chemical building block for sustainable production of superabsorbent polymers and acrylic plastics. With the objective of developing Saccharomyces cerevisiae as an efficient cell factory for high-level production of 3HP, we identified the β-alanine biosynthetic route as the most economically attractive according to the metabolic modeling. We engineered and optimized a synthetic pathway for de novo biosynthesis of β-alanine and its subsequent conversion into 3HP using a novel β-alanine-pyruvate aminotransferase discovered in Bacillus cereus. The final strain produced 3HP at a titer of 13.7±0.3gL(-1) with a 0.14±0.0C-molC-mol(-1) yield on glucose in 80h in controlled fed-batch fermentation in mineral medium at pH 5, and this work therefore lays the basis for developing a process for biological 3HP production.
Biotechnology and Bioengineering | 1999
Niels Bjerg Jensen; Kirsten Væver Jokumsen; John Villadsen
An experimental procedure for the determination of intracellular concentrations of the phosphorylated sugars in the lactic acid bacterium Lactococcus lactis is presented. The first step of the procedure is a rapid sampling of a small volume of the growth medium into 60% (v/v) methanol precooled to -35 degrees C, bringing about a fast and complete stop of all metabolic activity. In contrast to yeast the metabolites leak out of the cells when these are brought into contact with methanol and are present in the medium and in the biomass after the quenching. A liquid-liquid extraction with chloroform at -25 degrees C ensures a total permeability of the cellular membrane towards the metabolites of interest as well as the inactivation of enzymes liable to alter their levels. The final step of the procedure consists in a solid phase extraction using columns with a high affinity for phosphorylated components. The internal standard was recovered to an extent of 85-95%.
Metabolic Engineering | 2014
Kanchana Rueksomtawin Kildegaard; Björn M. Hallström; Thomas Blicher; Nikolaus Sonnenschein; Niels Bjerg Jensen; Svetlana Sherstyk; Scott James Harrison; Jerome Maury; Markus J. Herrgård; Agnieszka Sierakowska Juncker; Jochen Förster; Jens Nielsen; Irina Borodina
Biologically produced 3-hydroxypropionic acid (3 HP) is a potential source for sustainable acrylates and can also find direct use as monomer in the production of biodegradable polymers. For industrial-scale production there is a need for robust cell factories tolerant to high concentration of 3 HP, preferably at low pH. Through adaptive laboratory evolution we selected S. cerevisiae strains with improved tolerance to 3 HP at pH 3.5. Genome sequencing followed by functional analysis identified the causal mutation in SFA1 gene encoding S-(hydroxymethyl)glutathione dehydrogenase. Based on our findings, we propose that 3 HP toxicity is mediated by 3-hydroxypropionic aldehyde (reuterin) and that glutathione-dependent reactions are used for reuterin detoxification. The identified molecular response to 3 HP and reuterin may well be a general mechanism for handling resistance to organic acid and aldehydes by living cells.
PLOS ONE | 2016
Jerome Maury; Susanne Manuela Germann; Simo Abdessamad Jacobsen; Niels Bjerg Jensen; Kanchana Rueksomtawin Kildegaard; Markus J. Herrgård; Konstantin Schneider; Anna Koza; Jochen Förster; Jens Nielsen; Irina Borodina
Saccharomyces cerevisiae is widely used in the biotechnology industry for production of ethanol, recombinant proteins, food ingredients and other chemicals. In order to generate highly producing and stable strains, genome integration of genes encoding metabolic pathway enzymes is the preferred option. However, integration of pathway genes in single or few copies, especially those encoding rate-controlling steps, is often not sufficient to sustain high metabolic fluxes. By exploiting the sequence diversity in the long terminal repeats (LTR) of Ty retrotransposons, we developed a new set of integrative vectors, EasyCloneMulti, that enables multiple and simultaneous integration of genes in S. cerevisiae. By creating vector backbones that combine consensus sequences that aim at targeting subsets of Ty sequences and a quickly degrading selective marker, integrations at multiple genomic loci and a range of expression levels were obtained, as assessed with the green fluorescent protein (GFP) reporter system. The EasyCloneMulti vector set was applied to balance the expression of the rate-controlling step in the β-alanine pathway for biosynthesis of 3-hydroxypropionic acid (3HP). The best 3HP producing clone, with 5.45 g.L-1 of 3HP, produced 11 times more 3HP than the lowest producing clone, which demonstrates the capability of EasyCloneMulti vectors to impact metabolic pathway enzyme activity.
Biotechnology Journal | 2016
Susanne Manuela Germann; Simo Abdessamad Jacobsen; Konstantin Schneider; Scott James Harrison; Niels Bjerg Jensen; Xiao Chen; Steen Gustav Stahlhut; Irina Borodina; Hao Luo; Jiangfeng Zhu; Jerome Maury; Jochen Förster
Abstract Melatonin is a natural mammalian hormone that plays an important role in regulating the circadian cycle in humans. It is a clinically effective drug exhibiting positive effects as a sleep aid and a powerful antioxidant used as a dietary supplement. Commercial melatonin production is predominantly performed by complex chemical synthesis. In this study, we demonstrate microbial production of melatonin and related compounds, such as serotonin and N‐acetylserotonin. We generated Saccharomyces cerevisiae strains that comprise heterologous genes encoding one or more variants of an L‐tryptophan hydroxylase, a 5‐hydroxy‐L‐tryptophan decarboxylase, a serotonin acetyltransferase, an acetylserotonin O‐methyltransferase, and means for providing the cofactor tetrahydrobiopterin via heterologous biosynthesis and recycling pathways. We thereby achieved de novo melatonin biosynthesis from glucose. We furthermore accomplished increased product titers by altering expression levels of selected pathway enzymes and boosting co‐factor supply. The final yeast strain produced melatonin at a titer of 14.50 ± 0.57 mg L−1 in a 76h fermentation using simulated fed‐batch medium with glucose as sole carbon source. Our study lays the basis for further developing a yeast cell factory for biological production of melatonin.
Fems Yeast Research | 2017
Beata Joanna Lehka; Michael Eichenberger; Walden E. Bjørn-Yoshimoto; Katherina Garcia Vanegas; Nicolaas Buijs; Niels Bjerg Jensen; Jane Dannow Dyekjær; Håvard Jenssen; Ernesto Simon; Michael Naesby
Abstract Phenylpropanoids, such as flavonoids and stilbenoids, are of great commercial interest, and their production in Saccharomyces cerevisiae is a very promising strategy. However, to achieve commercially viable production, each step of the process must be optimised. We looked at carbon loss, known to occur in the heterologous flavonoid pathway in yeast, and identified an endogenous enzyme, the enoyl reductase Tsc13, which turned out to be responsible for the accumulation of phloretic acid via reduction of p‐coumaroyl‐CoA. Tsc13 is an essential enzyme involved in fatty acid synthesis and cannot be deleted. Hence, two approaches were adopted in an attempt to reduce the side activity without disrupting the natural function: site saturation mutagenesis identified a number of amino acid changes which slightly increased flavonoid production but without reducing the formation of the side product. Conversely, the complementation of TSC13 by a plant gene homologue essentially eliminated the unwanted side reaction, while retaining the productivity of phenylpropanoids in a simulated fed batch fermentation.
Frontiers in Bioengineering and Biotechnology | 2018
Jerome Maury; Soumya Kannan; Niels Bjerg Jensen; Frederik Kryh Öberg; Kanchana Rueksomtawin Kildegaard; Jochen Förster; Jens Nielsen; Christopher T. Workman; Irina Borodina
For an industrial fermentation process, it can be advantageous to decouple cell growth from product formation. This decoupling would allow for the rapid accumulation of biomass without inhibition from product formation, after which the fermentation can be switched to a mode where cells would grow minimally and primarily act as catalysts to convert substrate into desired product. The switch in fermentation mode should preferably be accomplished without the addition of expensive inducers. A common cell factory Saccharomyces cerevisiae is a Crabtree-positive yeast and is typically fermented at industrial scale under glucose-limited conditions to avoid the formation of ethanol. In this work, we aimed to identify and characterize promoters that depend on glucose concentration for use as dynamic control elements. Through analysis of mRNA data of S. cerevisiae grown in chemostats under glucose excess or limitation, we identified 34 candidate promoters that strongly responded to glucose presence or absence. These promoters were characterized in small-scale batch and fed-batch cultivations using a quickly maturing rapidly degrading green fluorescent protein yEGFP3-Cln2PEST as a reporter. Expressing 3-hydroxypropionic acid (3HP) pathway from a set of selected regulated promoters allowed for suppression of 3HP production during glucose-excess phase of a batch cultivation with subsequent activation in glucose-limiting conditions. Regulating the 3HP pathway by the ICL1 promoter resulted in 70% improvement of 3HP titer in comparison to PGK1 promoter.
Microbial Cell Factories | 2016
Kanchana Rueksomtawin Kildegaard; Niels Bjerg Jensen; Konstantin Schneider; Eik Czarnotta; Emre Özdemir; Tobias Klein; Jerome Maury; Birgitta E. Ebert; Hanne Bjerre Christensen; Yun Chen; Il‑Kwon Kim; Markus J. Herrgård; Lars M. Blank; Jochen Förster; Jens Nielsen; Irina Borodina
Archive | 2014
Niels Bjerg Jensen; Irina Borodina; Yun Chen; Jerome Maury; Kanchana Rueksomtawin Kildegaard; Jochen Förster; Jens Nielsen