Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Niels O. Verhulst is active.

Publication


Featured researches published by Niels O. Verhulst.


Annual Review of Entomology | 2013

Host Preferences of Blood-Feeding Mosquitoes

Willem Takken; Niels O. Verhulst

Mosquitoes use plant sugars and vertebrate blood as nutritional resources. When searching for blood hosts, some mosquitoes express preferential behavior for selected species. Here, we review the available knowledge on host preference, as this is expected to affect the life history and transmission of infectious pathogens. Host preference is affected by myriad extrinsic and intrinsic factors. Inherent factors are determined by genetic selection, which appears to be controlled by adaptive advantages that result from feeding on certain host species. Host preference of mosquitoes, although having a genetic basis, is characterized by high plasticity mediated by the density of host species, which by their abundance form a readily accessible source of blood. Host-selection behavior in mosquitoes is an exception rather than the rule. Those species that express strong and inherent host-selection behavior belong to the most important vectors of infectious diseases, which suggests that this behavioral trait may have evolved in parallel with parasite-host evolution.


PLOS ONE | 2011

Composition of Human Skin Microbiota Affects Attractiveness to Malaria Mosquitoes

Niels O. Verhulst; Yu Tong Qiu; Hans Beijleveld; Chris Maliepaard; Dan Knights; Stefan Schulz; Donna Berg-Lyons; Christian L. Lauber; Willem Verduijn; Geert W. Haasnoot; Roland Mumm; Harro J. Bouwmeester; Frans H.J. Claas; Marcel Dicke; Joop J. A. van Loon; Willem Takken; Rob Knight; Renate C. Smallegange

The African malaria mosquito Anopheles gambiae sensu stricto continues to play an important role in malaria transmission, which is aggravated by its high degree of anthropophily, making it among the foremost vectors of this disease. In the current study we set out to unravel the strong association between this mosquito species and human beings, as it is determined by odorant cues derived from the human skin. Microbial communities on the skin play key roles in the production of human body odour. We demonstrate that the composition of the skin microbiota affects the degree of attractiveness of human beings to this mosquito species. Bacterial plate counts and 16S rRNA sequencing revealed that individuals that are highly attractive to An. gambiae s.s. have a significantly higher abundance, but lower diversity of bacteria on their skin than individuals that are poorly attractive. Bacterial genera that are correlated with the relative degree of attractiveness to mosquitoes were identified. The discovery of the connection between skin microbial populations and attractiveness to mosquitoes may lead to the development of new mosquito attractants and personalized methods for protection against vectors of malaria and other infectious diseases.


Malaria Journal | 2009

Cultured skin microbiota attracts malaria mosquitoes

Niels O. Verhulst; Hans Beijleveld; Bart G. J. Knols; Willem Takken; Gosse Schraa; Harro J. Bouwmeester; Renate C. Smallegange

BackgroundHost-seeking of the African malaria mosquito, Anopheles gambiae sensu stricto, is guided by human odours. The precise nature of the odours, and the composition of attractive blends of volatiles, remains largely unknown. Skin microbiota plays an important role in the production of human body odours. It is hypothesized that host attractiveness and selection of An. gambiae is affected by the species composition, density, and metabolic activity of the skin microbiota. A study is presented in which the production and constituency of volatile organic compounds (VOCs) by human skin microbiota is examined and the behavioural responses of An. gambiae to VOCs from skin microbiota are investigated.MethodsBlood agar plates incubated with skin microbiota from human feet or with a reference strain of Staphylococcus epidermidis were tested for their attractiveness to An. gambiae in olfactometer bioassays and indoor trapping experiments. Entrained air collected from blood agar plates incubated with natural skin microbiota or with S. epidermidis were analysed using GC-MS. A synthetic blend of the compounds identified was tested for its attractiveness to An. gambiae. Behavioural data were analysed by a χ2-test and GLM. GC-MS results were analysed by fitting an exponential regression line to test the effect of the concentration of bacteria.ResultsMore An. gambiae were caught with blood agar plates incubated with skin bacteria than with sterile blood agar plates, with a significant effect of incubation time and dilution of the skin microbiota. When bacteria from the feet of four other volunteers were tested, similar effects were found. Fourteen putative attractants were found in the headspace of the skin bacteria. A synthetic blend of 10 of these was attractive to An. gambiae.ConclusionsThe discovery that volatiles produced by human skin microorganisms in vitro mediate An. gambiae host-seeking behaviour creates new opportunities for the development of odour-baited trapping systems. Additionally, identification of bacterial volatiles provides a new method to develop synthetic blends, attractive to An. gambiae and possibly other anthropophilic disease vectors.


Trends in Parasitology | 2011

Sweaty skin: an invitation to bite?

Renate C. Smallegange; Niels O. Verhulst; Willem Takken

Anopheles gambiae sensu stricto and Aedes aegypti have a preference for human blood, which determines their importance as vectors of pathogens responsible for human diseases. Volatile organic chemicals are the principal cues by which humans are being located. Human sweat contains components that are attractive to anthropophilic mosquito species, and variation in sweat composition causes differential attractiveness to mosquitoes within and between individuals and also between humans and other mammals. Characteristics of skin glands and skin microbiota define the odorous organic compounds emitted by sweat, thereby the degree of attractiveness of the host to mosquitoes. Carboxylic acids in particular appear to characterize humans. Thus sweat-associated human volatiles are probably the primary determinant factor in the host preference of anthropophilic mosquitoes.


PLOS ONE | 2010

Differential attraction of malaria mosquitoes to volatile blends produced by human skin bacteria.

Niels O. Verhulst; Rob Andriessen; Ulrike Groenhagen; Gabriella Bukovinszkiné Kiss; Stefan Schulz; Willem Takken; Joop J. A. van Loon; Gosse Schraa; Renate C. Smallegange

The malaria mosquito Anopheles gambiae sensu stricto is mainly guided by human odour components to find its blood host. Skin bacteria play an important role in the production of human body odour and when grown in vitro, skin bacteria produce volatiles that are attractive to A. gambiae. The role of single skin bacterial species in the production of volatiles that mediate the host-seeking behaviour of mosquitoes has remained largely unknown and is the subject of the present study. Headspace samples were taken to identify volatiles that mediate this behaviour. These volatiles could be used as mosquito attractants or repellents. Five commonly occurring species of skin bacteria were tested in an olfactometer for the production of volatiles that attract A. gambiae. Odour blends produced by some bacterial species were more attractive than blends produced by other species. In contrast to odours from the other bacterial species tested, odours produced by Pseudomonas aeruginosa were not attractive to A. gambiae. Headspace analysis of bacterial volatiles in combination with behavioural assays led to the identification of six compounds that elicited a behavioural effect in A. gambiae. Our results provide, to our knowledge, the first evidence for a role of selected bacterial species, common on the human skin, in determining the attractiveness of humans to malaria mosquitoes. This information will be used in the further development of a blend of semiochemicals for the manipulation of mosquito behaviour.


Preventive Veterinary Medicine | 2008

The phenology and population dynamics of Culicoides spp. in different ecosystems in the Netherlands

Willem Takken; Niels O. Verhulst; Frans Jacobs; Yde Jongema; Ron van Lammeren

The Netherlands has enjoyed a relatively free state of vector-borne diseases of economic importance for more than one century. Emerging infectious diseases may change this situation, threatening the health of humans, domestic livestock and wildlife. In order to be prepared for the potential outbreak of vector-borne diseases, a study was undertaken to investigate the distribution and seasonal dynamics of candidate vectors of infectious diseases with emphasis on bluetongue vectors (Culicoides spp.). The study focused primarily on the relationship between characteristic ecosystems suitable for bluetongue vectors and climate, as well as on the phenology and population dynamics of these vectors. Twelve locations were selected, distributed over four distinct habitats: a wetland area, three riverine systems, four peat land areas and four livestock farms. Culicoides populations were sampled continuously using CO(2)-baited counterflow traps from July 2005 until August 2006, with an interruption from November 2005 to March 2006. All vectors were identified to species level. Meteorological and environmental data were collected at each location. Culicoides species were found in all four different habitat types studied. Wetland areas and peat bogs were rich in Culicoides spp. The taxonomic groups Culicoides obsoletus (Meigen) and Culicoides pulicaris (Linnaeus) were strongly associated with farms. Eighty-eight percent of all Culicoides consisted of the taxon C. obsoletus/Culicoides scoticus. On the livestock farms, 3% of Culicoides existed of the alleged bluetongue vector Culicoides dewulfi Goetghebuer. Culicoides impunctatus Goetghebuer was strongly associated with wetland and peat bog. Many Culicoides species were found until late in the phenological season and their activity was strongly associated with climate throughout the year. High annual variations in population dynamics were observed within the same study areas, which were probably caused by annual variations in environmental conditions. The study demonstrates that candidate vectors of bluetongue virus are present in natural and livestock-farm habitats in the Netherlands, distributed widely across the country. Under favourable climatic conditions, following virus introduction, bluetongue can spread among livestock (cattle, sheep and goats), depending on the nature of the viral serotype. The question now arises whether the virus can survive the winter conditions in north-western Europe and whether measures can be taken that effectively halt further spread of the disease.


FEMS Microbiology Ecology | 2010

Chemical ecology of interactions between human skin microbiota and mosquitoes

Niels O. Verhulst; Willem Takken; Marcel Dicke; Gosse Schraa; Renate C. Smallegange

Microbiota on the human skin plays a major role in body odour production. The human microbial and chemical signature displays a qualitative and quantitative correlation. Genes may influence the chemical signature by shaping the composition of the microbiota. Recent studies on human skin microbiota, using 16S rRNA gene sequencing, found a high inter- and intrapersonal variation in bacterial species on the human skin, which is relatively stable over time. Human body odours mediate the attraction of mosquitoes to their blood hosts. Odours produced by skin microbiota are attractive to mosquitoes as shown by in vitro studies, and variation in bacterial species on the human skin may explain the variation in mosquito attraction between humans. Detailed knowledge of the ecology and genetics of human skin microbiota is needed in order to unravel the evolutionary mechanisms that underlie the interactions between mosquitoes and their hosts.


Vector-borne and Zoonotic Diseases | 2011

Geographic and Temporal Variations in Population Dynamics of Ixodes ricinus and Associated Borrelia Infections in The Netherlands

F. Gassner; Arnold J. H. van Vliet; S.L.G.E. Burgers; Frans Jacobs; Patrick Verbaarschot; Emiel K.E. Hovius; S. Mulder; Niels O. Verhulst; Leo S. van Overbeek; Willem Takken

In a countrywide investigation of the ecological factors that contribute to Lyme borreliosis risk, a longitudinal study on population dynamics of the sheep tick Ixodes ricinus and their infections with Borrelia burgdorferi sensu lato (s.l.) was undertaken at 24 sites in The Netherlands from July 2006 to December 2007. Study sites were mature forests, dune vegetations, or new forests on land reclaimed from the sea. Ticks were sampled monthly and nymphal ticks were investigated for the presence of Borrelia spp. I. ricinus was the only tick species found. Ticks were found in all sites, but with significant spatial and temporal variations in density between sites. Peak densities were found in July and August, with lowest tick numbers collected in December and January. In some sites, questing activities of I. ricinus nymphs and adults were observed in the winter months. Mean monthly Borrelia infections in nymphs varied from 0% to 29.0% (range: 0%-60%), and several sites had significantly higher mean nymphal Borrelia infections than others. Four genospecies of Borrelia burgdorferi s.l. were found, with B. afzelii being dominant at most sites. Borrelia infection rates in nymphal ticks collected in July, September, and November 2006 were significantly higher (23.7%, p<0.01) than those in the corresponding months of 2007 (9.9%). The diversity in Borrelia genospecies between sites was significantly different (p<0.001). Habitat structure (tree cover) was an effective discriminant parameter in the determination of Borrelia infection risk, as measured by the proportion of nymphal ticks infected with B. burgdorferi s.l. Thickness of the litter layer and moss cover were positively related to nymphal and adult tick densities. The study shows that Borrelia-infected ticks are present in many forest and dune areas in The Netherlands and suggests that in such biotopes, which are used for a wide variety of recreational activities, the infection risk is high.


Malaria Journal | 2011

Improvement of a synthetic lure for Anopheles gambiae using compounds produced by human skin microbiota

Niels O. Verhulst; Gabriella Bukovinszkiné Kiss; Wolfgang R Mukabana; Joop J. A. van Loon; Willem Takken; Renate C. Smallegange

BackgroundAnopheles gambiae sensu stricto is considered to be highly anthropophilic and volatiles of human origin provide essential cues during its host-seeking behaviour. A synthetic blend of three human-derived volatiles, ammonia, lactic acid and tetradecanoic acid, attracts A. gambiae. In addition, volatiles produced by human skin bacteria are attractive to this mosquito species. The purpose of the current study was to test the effect of ten compounds present in the headspace of human bacteria on the host-seeking process of A. gambiae. The effect of each of the ten compounds on the attractiveness of a basic blend of ammonia, lactic and tetradecanoic acid to A. gambiae was examined.MethodsThe host-seeking response of A. gambiae was evaluated in a laboratory set-up using a dual-port olfactometer and in a semi-field facility in Kenya using MM-X traps. Odorants were released from LDPE sachets and placed inside the olfactometer as well as in the MM-X traps. Carbon dioxide was added in the semi-field experiments, provided from pressurized cylinders or fermenting yeast.ResultsThe olfactometer and semi-field set-up allowed for high-throughput testing of the compounds in blends and in multiple concentrations. Compounds with an attractive or inhibitory effect were identified in both bioassays. 3-Methyl-1-butanol was the best attractant in both set-ups and increased the attractiveness of the basic blend up to three times. 2-Phenylethanol reduced the attractiveness of the basic blend in both bioassays by more than 50%.ConclusionsIdentification of volatiles released by human skin bacteria led to the discovery of compounds that have an impact on the host-seeking behaviour of A. gambiae. 3-Methyl-1-butanol may be used to increase mosquito trap catches, whereas 2-phenylethanol has potential as a spatial repellent. These two compounds could be applied in push-pull strategies to reduce mosquito numbers in malaria endemic areas.


Entomologia Experimentalis Et Applicata | 2011

Human Skin Microbiota And Their Volatiles As Odour Baits For The Malaria Mosquito Anopheles Gambiae S.S

Niels O. Verhulst; Wolfgang R Mukabana; Willem Takken; Renate C. Smallegange

Host seeking by the malaria mosquito Anopheles gambiae Giles sensu stricto (Diptera: Culicidae) is mainly guided by volatile chemicals present in human odours. The skin microbiota plays an important role in the production of these volatiles, and skin bacteria grown on agar plates attract An. gambiae s.s. in the laboratory. In this study, the attractiveness of volatiles produced by human skin bacteria to An. gambiae s.s. was tested in laboratory, semi‐field, and field experiments to assess these effects in increasing environmental complexity. A synthetic blend of 10 compounds identified in the headspace of skin bacteria was also tested for its attractiveness. Carbon dioxide significantly increased mosquito catches of traps baited with microbial volatiles in the semi‐field experiments and was therefore added to the field traps. Traps baited with skin bacteria caught significantly more An. gambiae s.s. than control traps, both in the laboratory and semi‐field experiments. Traps baited with the synthetic blend caught more mosquitoes than control traps in the laboratory experiments, but not in the semi‐field experiments. Although bacterial volatiles increased mosquito catches in the field study, trapping several mosquito vector species, these effects were not significant for An. gambiae s.l. It is concluded that volatiles from skin bacteria affect mosquito behaviour under laboratory and semi‐field conditions and, after fine tuning, have the potential to be developed as odour baits for mosquitoes.

Collaboration


Dive into the Niels O. Verhulst's collaboration.

Top Co-Authors

Avatar

Willem Takken

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Renate C. Smallegange

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Frans Jacobs

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Joop J. A. van Loon

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Marcel Dicke

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Annette O. Busula

International Centre of Insect Physiology and Ecology

View shared research outputs
Top Co-Authors

Avatar

Berhane T. Weldegergis

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Gosse Schraa

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Hans Beijleveld

Wageningen University and Research Centre

View shared research outputs
Researchain Logo
Decentralizing Knowledge