Niels Skals
University of Southern Denmark
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Niels Skals.
Proceedings of the National Academy of Sciences of the United States of America | 2008
Ryo Nakano; Niels Skals; Takuma Takanashi; Annemarie Surlykke; Takuji Koike; Keisuke Yoshida; Hirotaka Maruyama; Sadahiro Tatsuki; Yukio Ishikawa
Insects have evolved a marked diversity of mechanisms to produce loud conspicuous sounds for efficient communication. However, the risk of eavesdropping by competitors and predators is high. Here, we describe a mechanism for producing extremely low-intensity ultrasonic songs (46 dB sound pressure level at 1 cm) adapted for private sexual communication in the Asian corn borer moth, Ostrinia furnacalis. During courtship, the male rubs specialized scales on the wing against those on the thorax to produce the songs, with the wing membrane underlying the scales possibly acting as a sound resonator. The males song suppresses the escape behavior of the female, thereby increasing his mating success. Our discovery of extremely low-intensity ultrasonic communication may point to a whole undiscovered world of private communication, using “quiet” ultrasound.
The Journal of Experimental Biology | 2009
Ryo Nakano; Takuma Takanashi; T. Fujii; Niels Skals; Annemarie Surlykke; Yukio Ishikawa
SUMMARY Ultrasonic hearing is widespread among moths, but very few moth species have been reported to produce ultrasounds for sexual communication. In those that do, the signals are intense and thus well matched for long distance communication. By contrast, males of the Asian corn borer moth (Crambidae) were recently shown to whisper extremely low-intensity ultrasonic courtship songs close to females. Since low sound levels will prevent eavesdropping by predators, parasites and conspecific rivals, we predicted low intensity ultrasound communication to be widespread among moths. Here we tested 13 species of moths including members of the Noctuidae, Arctiidae, Geometridae and Crambidae. Males of nine species, 70%, produced broadband ultrasound close to females. Peak frequencies ranged from 38 to above 100 kHz. All sounds were of low intensity, 43-76 dB SPL at 1 cm [64±10 dB peSPL (mean ± s.d.), N=9 species]. These quiet and/or hyper-frequency ultrasounds are audible to nearby mates, but inaudible to unintended receivers. Although largely unknown because it is so inconspicuous, acoustic communication using low intensity ultrasound appears to be widespread among hearing moths. Thus, acoustic communication may be the norm rather than the exception.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Sylvia Anton; Katarina Evengaard; Romina B. Barrozo; Peter Anderson; Niels Skals
Modulation of sensitivity to sensory cues by experience is essential for animals to adapt to a changing environment. Sensitization and adaptation to signals of the same modality as a function of experience have been shown in many cases, and some of the neurobiological mechanisms underlying these processes have been described. However, the influence of sensory signals on the sensitivity of a different modality is largely unknown. In males of the noctuid moth, Spodoptera littoralis, the sensitivity to the female-produced sex pheromone increases 24 h after a brief preexposure with pheromone at the behavioral and central nervous level. Here we show that this effect is not confined to the same sensory modality: the sensitivity of olfactory neurons can also be modulated by exposure to a different sensory stimulus, i.e., a pulsed stimulus mimicking echolocating sounds from attacking insectivorous bats. We tested responses of preexposed male moths in a walking bioassay and recorded from neurons in the primary olfactory center, the antennal lobe. We show that brief exposure to a bat call, but not to a behaviorally irrelevant tone, increases the behavioral sensitivity of male moths to sex pheromone 24 h later in the same way as exposure to the sex pheromone itself. The observed behavioral modification is accompanied by an increase in the sensitivity of olfactory neurons in the antennal lobe. Our data provide thus evidence for cross-modal experience-dependent plasticity not only on the behavioral level, but also on the central nervous level, in an insect.
PLOS ONE | 2010
Takuma Takanashi; Ryo Nakano; Annemarie Surlykke; Haruki Tatsuta; Jun Tabata; Yukio Ishikawa; Niels Skals
Moths use ultrasounds as well as pheromones for sexual communication. In closely related moth species, variations in ultrasounds and pheromones are likely to profoundly affect mate recognition, reproductive isolation, and speciation. The European corn borer, Ostrinia nubilalis, and its Asian congeners, Ostrinia furnacalis and Ostrinia scapulalis, exhibit within-species and between-species variation in their pheromone communication. Recently, we reported ultrasound communication in O. furnacalis; however, variations in ultrasounds in the three congeners have not been addressed to date. Here we investigated features of ultrasound production and hearing in O. nubilalis and O. scapulalis, and compared them with those of O. furnacalis. As in O. furnacalis, males of O. nubilalis and O. scapulalis produced ultrasounds during courtship by rubbing specialized scales on the wings against scales on the thorax. The covering of these scales with nail polish muffled the sounds and significantly reduced mating success in O. nubilalis, showing the importance of ultrasound signaling in mating. The ultrasounds produced by O. nubilalis and O. scapulalis were similar, consisting of long trains of pairs of pulses with a main energy at 40 kHz, but distinctly different from the ultrasound produced by O. furnacalis, consisting of groups of pulses peaking at 50 kHz and with substantially more energy up to 80 kHz. Despite overall similarities, temporal features and patterns of amplitude modulation differed significantly among the geographic populations of O. nubilalis and O. scapulalis, which differed in pheromone type. In contrast, no significant difference in hearing was found among the three species with regard to the most sensitive frequencies and hearing threshold levels. The patterns of variations in the songs and pheromones well reflected those of the phylogenetic relationships, implying that ultrasound and pheromone communications have diverged concordantly. Our results suggest that concordant evolution in sexual signals such as courtship ultrasounds and sex pheromones occurs in moths.
Physiological Entomology | 2010
Ryo Nakano; Takuma Takanashi; Niels Skals; Annemarie Surlykke; Yukio Ishikawa
Males of the Asian corn borer moth Ostrinia furnacalis (Guenée) produce an ultrasonic courtship song of extremely low‐intensity during copulation attempts. The song has been shown to significantly increase the mating success of the male; however, the mode of action of the sound in courtship remains to be resolved. Behavioural experiments using pairs with deafened females or muted males show that, without the aid of the sound, 63% of males eventually succeed in mating after several copulation attempts, whereas the remainder (37%) make repeated attempts in vain until interrupted by the escape of the female. Because few (2%) males fail to copulate when females hear the courtship song, it is evident that the song has an effect on females, promoting the success of copulation attempts. In support of this view, males produce louder songs if the first copulation attempt fails, suggesting that the males increase their sound levels to achieve successful copulation. It is suggested that the ultrasonic songs of the male render the females motionless, which is the same response as that to ultrasonic bat calls. Because even slight movements by the female can interfere with the attempt of the male to copulate, it is likely that, by making her motionless, the success rate of a single copulation attempt is increased greatly.
Communicative & Integrative Biology | 2009
Ryo Nakano; Yukio Ishikawa; Sadahiro Tatsuki; Niels Skals; Annemarie Surlykke; Takuma Takanashi
Sound-producing moths have evolved a range of mechanisms to emit loud conspicuous ultrasounds directed toward mates, competitors and predators. We recently discovered a novel mechanism of sound production, i.e. stridulation of specialized scales on the wing and thorax, in the Asian corn borer moth, Ostrinia furnacalis, the male of which produces ultrasonic courtship songs in close proximity to a female (< 2 cm). The signal is very quiet, being exclusively adapted for private communication. A quiet signal is advantageous in that it prevents eavesdropping by competitors and/or predators. We argue that communication via quiet ultrasound, which has not been reported previously, is probably common in moths and other insects.
Pest Management Science | 2009
Tina Boddum; Niels Skals; Marit Wirén; Robert Baur; Stefan Rauscher; Ylva Hillbur
BACKGROUND The swede midge, Contarinia nasturtii Kieffer, is a serious pest in crucifers. Its pheromone is a blend of (2S,9S)-diacetoxyundecane, (2S,10S)-diacetoxyundecane and (2S)-acetoxyundecane. The pheromone is used in monitoring traps, and this study examines possible ways to optimise the traps. RESULTS Two dispenser types were compared: polyethylene dispensers and cotton dispensers. Polyethylene dispensers attracted male C. nasturtii for more than 6 weeks, whereas cotton dispensers were attractive for only 2 weeks. All three pheromone components were important for attraction of male midges in the field. The importance of the stereoisomeric compositions of the pheromone compounds was also tested-both in the wind tunnel and in the field. In the case of 2,9-diacetoxyundecane and 2-acetoxyundecane, the non-natural stereoisomers did not inhibit male C. nasturtii attraction, whereas one or both of the stereoisomers of 2,10-diacetoxyundecane did. CONCLUSION Pheromone traps with the synthetic pheromone in a 1:2:0.02 ratio emitted from PE dispensers were highly effective and long lasting. As the mixture of stereoisomers of 2,10-diacetoxyundecane strongly inhibited attraction of male C. nasturtii while those of 2,9-diacetoxyundecane and 2-acetoxyundecane did not have any inhibitory effect, it is possible to produce traps that are effective and long lasting but cheaper to produce and maintain.
Journal of Insect Science | 2007
Glenn P. Svensson; Christer Löfstedt; Niels Skals
Abstract Nocturnal moths often use sex pheromones to find mates and ultrasonic hearing to evade echolocating bat predators. Male moths, when confronted with both pheromones and sound, thus have to trade off reproduction and predator avoidance depending on the relative strengths of the perceived conflicting stimuli. The ultrasonic hearing of Plodia interpunctella was investigated. A threshold curve for evasive reaction to ultrasound of tethered moths was established, and the frequency of best hearing was found to be between 40 and 70 kHz. Flight tunnel experiments were performed where males orienting in a sex pheromone plume were stimulated with 50 kHz pulses of different intensities. Pheromone-stimulated males showed increased defensive response with increased intensity of the sound stimulus, and the acoustic cue had long-lasting effects on their pheromone-mediated flight, revealing a cost associated with vital evasive behaviours.
Journal of Insect Physiology | 2010
Tina Boddum; Niels Skals; Sharon R. Hill; Bill S. Hansson; Ylva Hillbur
This study describes the morphology and function of the antennal sensilla in two gall midge species, Contarinia nasturtii and Mayetiola destructor, where multi-component sex pheromones have been identified. Both species possess sensilla trichodea, s. coeloconica, s. chaetica and s. circumfila. Sensilla circumfila, which consist of several sensilla that bifurcate and fuse into one structure, are unique for the gall midges. In C. nasturtii s. circumfila are sexually dimorphic. In males, they form elongated loops suspended on cuticular spines, whereas in females they run like worm-like structures directly on the antennal surface. Single sensillum recordings demonstrated that olfactory sensory neurons housed in male s. circumfila in C. nasturtii responded to the female sex pheromone. In M. destructor, s. circumfila were attached to the antennal surface in both sexes, and displayed no response to sex pheromone components. A sexual dimorphism was also found in the number of s. trichodea per antennal segment in both C. nasturtii (male 1 vs. female 7) and M. destructor (male 13 vs. female 10). OSNs located in male M. destructor s. trichodea responded to the sex pheromone. This is the first gall midge single sensillum study, and the first demonstration of the functional significance of s. circumfila.
Physiological Entomology | 2008
Niels Skals; Annemarie Surlykke
Greater wax moths (Galleria mellonella L., Pyraloidea) use ultrasound sensitive ears to detect clicking conspecifics and echolocating bats. Pyralid ears have four sensory cells, A1−4. The audiogram of G. mellonella has best frequency at 60 kHz with a threshold around 47 dB sound pressure level. A1 and A2 have almost equal thresholds in contrast to noctuids and geometrids. A3 responds at + 12 to + 16 dB relative to the A1 threshold. The threshold data from the A‐cells give no indication of frequency discrimination in greater wax moths.