Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nigam H. Shah is active.

Publication


Featured researches published by Nigam H. Shah.


Nucleic Acids Research | 2009

BioPortal: ontologies and integrated data resources at the click of a mouse

Natalya Fridman Noy; Nigam H. Shah; Patricia L. Whetzel; Benjamin Dai; Michael Dorf; Nicholas Griffith; Clement Jonquet; Daniel L. Rubin; Margaret-Anne D. Storey; Christopher G. Chute; Mark A. Musen

Biomedical ontologies provide essential domain knowledge to drive data integration, information retrieval, data annotation, natural-language processing and decision support. BioPortal (http://bioportal.bioontology.org) is an open repository of biomedical ontologies that provides access via Web services and Web browsers to ontologies developed in OWL, RDF, OBO format and Protégé frames. BioPortal functionality includes the ability to browse, search and visualize ontologies. The Web interface also facilitates community-based participation in the evaluation and evolution of ontology content by providing features to add notes to ontology terms, mappings between terms and ontology reviews based on criteria such as usability, domain coverage, quality of content, and documentation and support. BioPortal also enables integrated search of biomedical data resources such as the Gene Expression Omnibus (GEO), ClinicalTrials.gov, and ArrayExpress, through the annotation and indexing of these resources with ontologies in BioPortal. Thus, BioPortal not only provides investigators, clinicians, and developers ‘one-stop shopping’ to programmatically access biomedical ontologies, but also provides support to integrate data from a variety of biomedical resources.


Nature Biotechnology | 2010

The BioPAX community standard for pathway data sharing

Emek Demir; Michael P. Cary; Suzanne M. Paley; Ken Fukuda; Christian Lemer; Imre Vastrik; Guanming Wu; Peter D'Eustachio; Carl F. Schaefer; Joanne S. Luciano; Frank Schacherer; Irma Martínez-Flores; Zhenjun Hu; Verónica Jiménez-Jacinto; Geeta Joshi-Tope; Kumaran Kandasamy; Alejandra López-Fuentes; Huaiyu Mi; Elgar Pichler; Igor Rodchenkov; Andrea Splendiani; Sasha Tkachev; Jeremy Zucker; Gopal Gopinath; Harsha Rajasimha; Ranjani Ramakrishnan; Imran Shah; Mustafa Syed; Nadia Anwar; Özgün Babur

Biological Pathway Exchange (BioPAX) is a standard language to represent biological pathways at the molecular and cellular level and to facilitate the exchange of pathway data. The rapid growth of the volume of pathway data has spurred the development of databases and computational tools to aid interpretation; however, use of these data is hampered by the current fragmentation of pathway information across many databases with incompatible formats. BioPAX, which was created through a community process, solves this problem by making pathway data substantially easier to collect, index, interpret and share. BioPAX can represent metabolic and signaling pathways, molecular and genetic interactions and gene regulation networks. Using BioPAX, millions of interactions, organized into thousands of pathways, from many organisms are available from a growing number of databases. This large amount of pathway data in a computable form will support visualization, analysis and biological discovery.


Nucleic Acids Research | 2011

BioPortal: enhanced functionality via new Web services from the National Center for Biomedical Ontology to access and use ontologies in software applications

Patricia L. Whetzel; Natalya Fridman Noy; Nigam H. Shah; Paul R. Alexander; Csongor Nyulas; Tania Tudorache; Mark A. Musen

The National Center for Biomedical Ontology (NCBO) is one of the National Centers for Biomedical Computing funded under the NIH Roadmap Initiative. Contributing to the national computing infrastructure, NCBO has developed BioPortal, a web portal that provides access to a library of biomedical ontologies and terminologies (http://bioportal.bioontology.org) via the NCBO Web services. BioPortal enables community participation in the evaluation and evolution of ontology content by providing features to add mappings between terms, to add comments linked to specific ontology terms and to provide ontology reviews. The NCBO Web services (http://www.bioontology.org/wiki/index.php/NCBO_REST_services) enable this functionality and provide a uniform mechanism to access ontologies from a variety of knowledge representation formats, such as Web Ontology Language (OWL) and Open Biological and Biomedical Ontologies (OBO) format. The Web services provide multi-layered access to the ontology content, from getting all terms in an ontology to retrieving metadata about a term. Users can easily incorporate the NCBO Web services into software applications to generate semantically aware applications and to facilitate structured data collection.


Genome Biology | 2003

Characterizing the stress/defense transcriptome of Arabidopsis

Ramamurthy Mahalingam; AnaMaria Gomez-Buitrago; Nancy Eckardt; Nigam H. Shah; Ángel Arturo Guevara-García; Philip J Day; Ramesh Raina; Nina V. Fedoroff

BackgroundTo understand the gene networks that underlie plant stress and defense responses, it is necessary to identify and characterize the genes that respond both initially and as the physiological response to the stress or pathogen develops. We used PCR-based suppression subtractive hybridization to identify Arabidopsis genes that are differentially expressed in response to ozone, bacterial and oomycete pathogens and the signaling molecules salicylic acid (SA) and jasmonic acid.ResultsWe identified a total of 1,058 differentially expressed genes from eight stress cDNA libraries. Digital northern analysis revealed that 55% of the stress-inducible genes are rarely transcribed in unstressed plants and 17% of them were not previously represented in Arabidopsis expressed sequence tag databases. More than two-thirds of the genes in the stress cDNA collection have not been identified in previous studies as stress/defense response genes. Several stress-responsive cis-elements showed a statistically significant over-representation in the promoters of the genes in the stress cDNA collection. These include W- and G-boxes, the SA-inducible element, the abscisic acid response element and the TGA motif.ConclusionsThe stress cDNA collection comprises a broad repertoire of stress-responsive genes encoding proteins that are involved in both the initial and subsequent stages of the physiological response to abiotic stress and pathogens. This set of stress-, pathogen- and hormone-modulated genes is an important resource for understanding the genetic interactions underlying stress signaling and responses and may contribute to the characterization of the stress transcriptome through the construction of standardized specialized arrays.


Clinical Pharmacology & Therapeutics | 2012

Novel Data-Mining Methodologies for Adverse Drug Event Discovery and Analysis

Rave Harpaz; William DuMouchel; Nigam H. Shah; David Madigan; Patrick B. Ryan; Carol Friedman

An important goal of the health system is to identify new adverse drug events (ADEs) in the postapproval period. Data‐mining methods that can transform data into meaningful knowledge to inform patient safety have proven essential for this purpose. New opportunities have emerged to harness data sources that have not been used within the traditional framework. This article provides an overview of recent methodological innovations and data sources used to support ADE discovery and analysis.


Journal of the American Medical Informatics Association | 2012

The National Center for Biomedical Ontology

Mark A. Musen; Natalya Fridman Noy; Nigam H. Shah; Patricia L. Whetzel; Christopher G. Chute; Margaret Anne Story; Barry Smith

The National Center for Biomedical Ontology is now in its seventh year. The goals of this National Center for Biomedical Computing are to: create and maintain a repository of biomedical ontologies and terminologies; build tools and web services to enable the use of ontologies and terminologies in clinical and translational research; educate their trainees and the scientific community broadly about biomedical ontology and ontology-based technology and best practices; and collaborate with a variety of groups who develop and use ontologies and terminologies in biomedicine. The centerpiece of the National Center for Biomedical Ontology is a web-based resource known as BioPortal. BioPortal makes available for research in computationally useful forms more than 270 of the worlds biomedical ontologies and terminologies, and supports a wide range of web services that enable investigators to use the ontologies to annotate and retrieve data, to generate value sets and special-purpose lexicons, and to perform advanced analytics on a wide range of biomedical data.


Journal of the American Medical Informatics Association | 2013

Web-scale pharmacovigilance: listening to signals from the crowd

Ryen W. White; Nicholas P. Tatonetti; Nigam H. Shah; Russ B. Altman; Eric Horvitz

Adverse drug events cause substantial morbidity and mortality and are often discovered after a drug comes to market. We hypothesized that Internet users may provide early clues about adverse drug events via their online information-seeking. We conducted a large-scale study of Web search log data gathered during 2010. We pay particular attention to the specific drug pairing of paroxetine and pravastatin, whose interaction was reported to cause hyperglycemia after the time period of the online logs used in the analysis. We also examine sets of drug pairs known to be associated with hyperglycemia and those not associated with hyperglycemia. We find that anonymized signals on drug interactions can be mined from search logs. Compared to analyses of other sources such as electronic health records (EHR), logs are inexpensive to collect and mine. The results demonstrate that logs of the search activities of populations of computer users can contribute to drug safety surveillance.


PLOS ONE | 2015

Proton Pump Inhibitor Usage and the Risk of Myocardial Infarction in the General Population.

Nigam H. Shah; Paea LePendu; Anna Bauer-Mehren; Yohannes T. Ghebremariam; Srinivasan V Iyer; Jake Marcus; Kevin T. Nead; John P. Cooke; Nicholas J. Leeper

Background and Aims Proton pump inhibitors (PPIs) have been associated with adverse clinical outcomes amongst clopidogrel users after an acute coronary syndrome. Recent pre-clinical results suggest that this risk might extend to subjects without any prior history of cardiovascular disease. We explore this potential risk in the general population via data-mining approaches. Methods Using a novel approach for mining clinical data for pharmacovigilance, we queried over 16 million clinical documents on 2.9 million individuals to examine whether PPI usage was associated with cardiovascular risk in the general population. Results In multiple data sources, we found gastroesophageal reflux disease (GERD) patients exposed to PPIs to have a 1.16 fold increased association (95% CI 1.09–1.24) with myocardial infarction (MI). Survival analysis in a prospective cohort found a two-fold (HR = 2.00; 95% CI 1.07–3.78; P = 0.031) increase in association with cardiovascular mortality. We found that this association exists regardless of clopidogrel use. We also found that H2 blockers, an alternate treatment for GERD, were not associated with increased cardiovascular risk; had they been in place, such pharmacovigilance algorithms could have flagged this risk as early as the year 2000. Conclusions Consistent with our pre-clinical findings that PPIs may adversely impact vascular function, our data-mining study supports the association of PPI exposure with risk for MI in the general population. These data provide an example of how a combination of experimental studies and data-mining approaches can be applied to prioritize drug safety signals for further investigation.


Clinical Pharmacology & Therapeutics | 2013

Performance of Pharmacovigilance Signal‐Detection Algorithms for the FDA Adverse Event Reporting System

Rave Harpaz; William DuMouchel; Paea LePendu; Anna Bauer-Mehren; Patrick B. Ryan; Nigam H. Shah

Signal‐detection algorithms (SDAs) are recognized as vital tools in pharmacovigilance. However, their performance characteristics are generally unknown. By leveraging a unique gold standard recently made public by the Observational Medical Outcomes Partnership (OMOP) and by conducting a unique systematic evaluation, we provide new insights into the diagnostic potential and characteristics of SDAs that are routinely applied to the US Food and Drug Administration (FDA) Adverse Event Reporting System (AERS). We find that SDAs can attain reasonable predictive accuracy in signaling adverse events. Two performance classes emerge, indicating that the class of approaches that address confounding and masking effects benefits safety surveillance. Our study shows that not all events are equally detectable, suggesting that specific events might be monitored more effectively using other data sources. We provide performance guidelines for several operating scenarios to inform the trade‐off between sensitivity and specificity for specific use cases. We also propose an approach and demonstrate its application in identifying optimal signaling thresholds, given specific misclassification tolerances.


Clinical Pharmacology & Therapeutics | 2013

Pharmacovigilance Using Clinical Notes

Paea LePendu; Srinivasan V Iyer; Anna Bauer-Mehren; Rave Harpaz; Jonathan M. Mortensen; Tanya Podchiyska; Todd A. Ferris; Nigam H. Shah

With increasing adoption of electronic health records (EHRs), there is an opportunity to use the free‐text portion of EHRs for pharmacovigilance. We present novel methods that annotate the unstructured clinical notes and transform them into a deidentified patient–feature matrix encoded using medical terminologies. We demonstrate the use of the resulting high‐throughput data for detecting drug–adverse event associations and adverse events associated with drug–drug interactions. We show that these methods flag adverse events early (in most cases before an official alert), allow filtering of spurious signals by adjusting for potential confounding, and compile prevalence information. We argue that analyzing large volumes of free‐text clinical notes enables drug safety surveillance using a yet untapped data source. Such data mining can be used for hypothesis generation and for rapid analysis of suspected adverse event risk.

Collaboration


Dive into the Nigam H. Shah's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kevin T. Nead

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge