Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nika N. Danial is active.

Publication


Featured researches published by Nika N. Danial.


Cell | 2004

Cell Death: Critical Control Points

Nika N. Danial; Stanley J. Korsmeyer

Programmed cell death is a distinct genetic and biochemical pathway essential to metazoans. An intact death pathway is required for successful embryonic development and the maintenance of normal tissue homeostasis. Apoptosis has proven to be tightly interwoven with other essential cell pathways. The identification of critical control points in the cell death pathway has yielded fundamental insights for basic biology, as well as provided rational targets for new therapeutics.


Nature | 2003

BAD and glucokinase reside in a mitochondrial complex that integrates glycolysis and apoptosis

Nika N. Danial; Colette F. Gramm; Luca Scorrano; Chen-Yu Zhang; Stefan Krauss; Ann M. Ranger; Sandeep Robert Datta; Michael E. Greenberg; Lawrence J. Licklider; Bradford B. Lowell; Steven P. Gygi; Stanley J. Korsmeyer

Glycolysis and apoptosis are considered major but independent pathways that are critical for cell survival. The activity of BAD, a pro-apoptotic BCL-2 family member, is regulated by phosphorylation in response to growth/survival factors. Here we undertook a proteomic analysis to assess whether BAD might also participate in mitochondrial physiology. In liver mitochondria, BAD resides in a functional holoenzyme complex together with protein kinase A and protein phosphatase 1 (PP1) catalytic units, Wiskott–Aldrich family member WAVE-1 as an A kinase anchoring protein, and glucokinase (hexokinase IV). BAD is required to assemble the complex in that Bad-deficient hepatocytes lack this complex, resulting in diminished mitochondria-based glucokinase activity and blunted mitochondrial respiration in response to glucose. Glucose deprivation results in dephosphorylation of BAD, and BAD-dependent cell death. Moreover, the phosphorylation status of BAD helps regulate glucokinase activity. Mice deficient for BAD or bearing a non-phosphorylatable BAD(3SA) mutant display abnormal glucose homeostasis including profound defects in glucose tolerance. This combination of proteomics, genetics and physiology indicates an unanticipated role for BAD in integrating pathways of glucose metabolism and apoptosis.


Clinical Cancer Research | 2007

BCL-2 Family Proteins: Critical Checkpoints of Apoptotic Cell Death

Nika N. Danial

Apoptosis is a morphologically distinct form of programmed cell death essential for normal development and tissue homeostasis. Aberrant regulation of this pathway is linked to multiple human diseases, including cancer, autoimmunity, neurodegenerative disorders, and diabetes. The BCL-2 family of proteins constitutes a critical control point in apoptosis residing immediately upstream of irreversible cellular damage, where family members control the release of apoptogenic factors from mitochondria. The cardinal member of this family, BCL-2, was originally discovered as the defining oncogene in follicular lymphomas, located at one reciprocal breakpoint of the t(14;18) (q32;q21) chromosomal translocation. Since this original discovery, remarkable efforts marshaled by many investigators around the world have advanced our knowledge of the basic biology, molecular mechanisms, and therapeutic targets in the apoptotic pathway. This review highlights findings from many laboratories that have helped uncover some of the critical control points in apoptosis. The emerging picture is that of an intricate cellular machinery orchestrated by tightly regulated molecular interactions and conformational changes within BCL-2 family proteins that ultimately govern the cellular commitment to apoptotic death.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Bad-deficient mice develop diffuse large B cell lymphoma.

Ann M. Ranger; Jiping Zha; Hisashi Harada; Sandeep Robert Datta; Nika N. Danial; Andrew P. Gilmore; Jeffery L. Kutok; Michelle M. Le Beau; Michael E. Greenberg; Stanley J. Korsmeyer

The proapoptotic activity of the “BH3-only” molecule BAD can be differentially regulated by survival factor signaling. Bad-deficient mice lacking both BAD long and BAD short proteins proved viable, and most cell types appeared to develop normally. BAD did not exclusively account for cell death after withdrawal of survival factors, but it was an intermediate for epidermal growth factor- or insulin-like growth factor I-countered apoptosis, consistent with a “sensitizing” BH3-only molecule. Lymphocytes developed normally with no premalignant hyperplasia, but they displayed subtle abnormalities in proliferation and IgG production. Despite the minimal phenotype, Bad-deficient mice progressed, with aging, to diffuse large B cell lymphoma of germinal center origin. Exposure of Bad-null mice to sublethal γ-irradiation resulted in an increased incidence of pre-T cell and pro-/pre-B cell lymphoblastic leukemia/lymphoma. Thus, proapoptotic BAD suppresses tumorigenesis in the lymphocyte lineage.


Nature Medicine | 2008

Dual role of proapoptotic BAD in insulin secretion and beta cell survival

Nika N. Danial; Loren D. Walensky; Chen-Yu Zhang; Cheol Soo Choi; Jill K. Fisher; Anthony J A Molina; Sandeep Robert Datta; Kenneth Pitter; Gregory H. Bird; Jakob D. Wikstrom; J T Deeney; Kirsten Robertson; Joel Morash; Ameya Kulkarni; Susanne Neschen; Sheene Kim; Michael E. Greenberg; Barbara E. Corkey; Orian S. Shirihai; Gerald I. Shulman; Bradford B. Lowell; Stanley J. Korsmeyer

The proapoptotic BCL-2 family member BAD resides in a glucokinase-containing complex that regulates glucose-driven mitochondrial respiration. Here, we present genetic evidence of a physiologic role for BAD in glucose-stimulated insulin secretion by beta cells. This novel function of BAD is specifically dependent upon the phosphorylation of its BH3 sequence, previously defined as an essential death domain. We highlight the pharmacologic relevance of phosphorylated BAD BH3 by using cell-permeable, hydrocarbon-stapled BAD BH3 helices that target glucokinase, restore glucose-driven mitochondrial respiration and correct the insulin secretory response in Bad-deficient islets. Our studies uncover an alternative target and function for the BAD BH3 domain and emphasize the therapeutic potential of phosphorylated BAD BH3 mimetics in selectively restoring beta cell function. Furthermore, we show that BAD regulates the physiologic adaptation of beta cell mass during high-fat feeding. Our findings provide genetic proof of the bifunctional activities of BAD in both beta cell survival and insulin secretion.


Oncogene | 2008

BAD: undertaker by night, candyman by day

Nika N. Danial

The BH3-only pro-apoptotic proteins are upstream sensors of cellular damage that selectively respond to specific, proximal death and survival signals. Genetic models and biochemical studies indicate that these molecules are latent killers until activated through transcriptional or post-translational mechanisms in a tissue-restricted and signal-specific manner. The large number of BH3-only proteins, their unique subcellular localization, protein-interaction network and diverse modes of activation suggest specialization of their damage-sensing function, ensuring that the core apoptotic machinery is poised to receive input from a wide range of cellular stress signals. The apoptotic response initiated by the activation of BH3-only proteins ultimately culminates in allosteric activation of pro-apoptotic BAX and BAK, the gateway proteins to the mitochondrial pathway of apoptosis. From activation of BH3-only proteins to oligomerization of BAX and BAK and mitochondrial outer membrane permeabilization, an intricate network of interactions between the pro- and anti-apoptotic members of the BCL-2 family orchestrates the decision to undergo apoptosis. Beyond regulation of apoptosis, multiple BCL-2 proteins have recently emerged as active components of select homeostatic pathways carrying other cellular functions. This review focuses on BAD, which was the first BH3-only protein linked to proximal survival signals through phosphorylation by survival kinases. In addition to findings that delineated the physiological role of BAD in apoptosis and its dynamic regulation by phosphorylation, studies pointing to new roles for this protein in other physiological pathways, such as glucose metabolism, are highlighted. By executing its ‘day’ and ‘night’ jobs in metabolism and apoptosis, respectively, BAD helps coordinate mitochondrial fuel metabolism and the apoptotic machinery.


Molecular and Cellular Biology | 1999

Transcriptional repression of Stat6-dependent interleukin-4-induced genes by BCL-6: specific regulation of iepsilon transcription and immunoglobulin E switching.

Miera B. Harris; Chih Chao Chang; Nika N. Danial; Jandong Zhang; Denise Kuehner; Bihui H. Ye; Marina Kvatyuk; Pier Paolo Pandolfi; Giorgio Cattoretti; Riccardo Dalla-Favera; Paul Rothman

ABSTRACT The BCL-6 proto-oncogene encodes a POZ/zinc-finger transcription factor that is expressed in B cells and a subset of CD4+ T cells within germinal centers. Recent evidence suggests that BCL-6 can act as a sequence-specific repressor of transcription, but the target genes for this activity have not yet been identified. The binding site for BCL-6 shares striking homology to the sites that are the target sequence for the interleukin-4 (IL-4)-induced Stat6 (signal transducers and activators of transcription) signaling molecule. Electrophoretic mobility shift assays demonstrate that BCL-6 can bind, with different affinities, to several DNA elements recognized by Stat6. Expression of BCL-6 can repress the IL-4-dependent induction of immunoglobulin (Ig) germ line ɛ transcripts, but does not repress the IL-4 induction of CD23 transcripts. Consistent with the role of BCL-6 in modulating transcription from the germ line ɛ promoter, BCL-6−/−mice display an increased ability to class switch to IgE in response to IL-4 in vitro. These animals also exhibit a multiorgan inflammatory disease characterized by the presence of a large number of IgE+ B cells. The apparent dysregulation of IgE production is abolished in BCL-6−/− Stat6−/− mice, indicating that BCL-6 regulation of Ig class switching is dependent upon Stat6 signaling. Thus, BCL-6 can modulate the transcription of selective Stat6-dependent IL-4 responses, including IgE class switching in B cells.


Cancer Cell | 2012

Metabolic Signatures Uncover Distinct Targets in Molecular Subsets of Diffuse Large B Cell Lymphoma

Pilar Caro; Amar U. Kishan; Erik Norberg; Illana A. Stanley; Bjoern Chapuy; Scott B. Ficarro; Klaudia Polak; Daniel Tondera; John S. Gounarides; Hong Yin; Feng Zhou; Michael R. Green; Linfeng Chen; Stefano Monti; Jarrod A. Marto; Margaret A. Shipp; Nika N. Danial

Molecular signatures have identified several subsets of diffuse large B cell lymphoma (DLBCL) and rational targets within the B cell receptor (BCR) signaling axis. The OxPhos-DLBCL subset, which harbors the signature of genes involved in mitochondrial metabolism, is insensitive to inhibition of BCR survival signaling but is functionally undefined. We show that, compared with BCR-DLBCLs, OxPhos-DLBCLs display enhanced mitochondrial energy transduction, greater incorporation of nutrient-derived carbons into the tricarboxylic acid cycle, and increased glutathione levels. Moreover, perturbation of the fatty acid oxidation program and glutathione synthesis proved selectively toxic to this tumor subset. Our analysis provides evidence for distinct metabolic fingerprints and associated survival mechanisms in DLBCL and may have therapeutic implications.


Oncogene | 2000

JAK-STAT signaling activated by Abl oncogenes

Nika N. Danial; Paul Rothman

The Abl oncoproteins v-Abl and BCR-Abl can activate member of the signal transducers and activators of transcription (STAT) family of signaling proteins. The mechanisms by which these oncoproteins activate STATs appear to differ. In cells transformed by v-Abl, Janus kinase (JAK) tyrosine kinases are constitutively activated. In these cells, the v-Abl oncoprotein and the JAK kinases physically associate. Mapping of the JAK interaction domain in v-Abl demonstrates that amino acids within the carboxyl terminal region of v-Abl bind JAKs through a direct interaction. A mutant of v-Abl lacking this region does not bind or activate JAK 1 in vivo, fails to activate STAT proteins, does not induce cellular proliferation, and is less efficient in cellular transformation. Kinase inactive mutants of JAK 1 inhibit the ability of v-Abl to activate STATs, to induce cytokine-independent proliferation, and to transform bone marrow cells. Interestingly, these effects correlate with defects in the activation of several pathways by v-Abl including Akt, PI3-kinase, STATs, and Ras. These data suggest that Jak kinases may play an important role in v-Abl induced transformation.


Molecular Cell | 2009

Bad targets the permeability transition pore independent of Bax or Bak to switch between Ca2+-dependent cell survival and death

Soumya Sinha Roy; Muniswamy Madesh; Erika Davies; Bruno Antonsson; Nika N. Danial; György Hajnóczky

Calcium oscillations exert physiological control on mitochondrial energy metabolism and can also lead to mitochondrial membrane permeabilization and cell death. The outcome of the mitochondrial calcium signaling is altered by stress factors such as ceramide or staurosporine. However, the mechanism of this proapoptotic switch remains unclear. Using genetic, biochemical, pharmacological, and functional approaches, we here show that ceramide and staurosporine target PP2A and protein kinases A and C, respectively, in a mitochondria-associated signaling complex to induce dephosphorylation of the BH3-only protein Bad. Dephosphorylated Bad sensitizes the mitochondrial permeability transition pore (PTP) to Ca2+ through a Bcl-xL-sensitive and VDAC-mediated process. Furthermore, the Bad-induced sensitization of the PTP to Ca2+ does not require Bax or Bak. Thus, phospho-regulatory mechanisms converge on Bad to switch between the survival and apoptotic functions of mitochondrial calcium signaling by activating a mechanism whereby a BH3-only protein bypasses Bax/Bak and engages the PTP.

Collaboration


Dive into the Nika N. Danial's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Barry H. Paw

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Carlo Brugnara

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Dhvanit I. Shah

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric L. Pierce

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Guillaume Vogin

Brigham and Women's Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge