Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Niklas Hagberg is active.

Publication


Featured researches published by Niklas Hagberg.


Journal of Immunology | 2011

IFN-α Production by Plasmacytoid Dendritic Cells Stimulated with RNA-Containing Immune Complexes Is Promoted by NK Cells via MIP-1β and LFA-1

Niklas Hagberg; Olof Berggren; Dag Leonard; Gert Weber; Yenan T. Bryceson; Gunnar V. Alm; Maija-Leena Eloranta; Lars Rönnblom

Several systemic autoimmune diseases display a prominent IFN signature. This is caused by a continuous IFN-α production by plasmacytoid dendritic cells (pDCs), which are activated by immune complexes (ICs) containing nucleic acid. The IFN-α production by pDCs stimulated with RNA-containing IC (RNA-IC) consisting of anti-RNP autoantibodies and U1 small nuclear ribonucleoprotein particles was recently shown to be inhibited by monocytes, but enhanced by NK cells. The inhibitory effect of monocytes was mediated by TNF-α, PGE2, and reactive oxygen species, but the mechanisms for the NK cell-mediated increase in IFN-α production remained unclear. In this study, we investigated the mechanisms whereby NK cells increase the RNA-IC–induced IFN-α production by pDCs. Furthermore, NK cells from patients with systemic lupus erythematosus (SLE) were evaluated for their capacity to promote IFN-α production. We found that CD56dim NK cells could increase IFN-α production >1000-fold after RNA-IC activation, whereas CD56bright NK cells required costimulation by IL-12 and IL-18 to promote IFN-α production. NK cells produced MIP-1α, MIP-1β, RANTES, IFN-γ, and TNF-α via RNA-IC–mediated FcγRIIIA activation. The IFN-α production in pDCs was promoted by NK cells via MIP-1β secretion and LFA-mediated cell–cell contact. Moreover, NK cells from SLE patients displayed a reduced capacity to promote the RNA-IC–induced IFN-α production, which could be restored by exogenous IL-12 and IL-18. Thus, different molecular mechanisms can mediate the NK cell-dependent increase in IFN-α production by RNA-IC–stimulated pDCs, and our study suggests that the possibility to therapeutically target the NK–pDC axis in IFN-α–driven autoimmune diseases such as SLE should be investigated.


Scandinavian Journal of Immunology | 2015

Systemic Lupus Erythematosus – A Disease with A Dysregulated Type I Interferon System

Niklas Hagberg; Lars Rönnblom

Systemic lupus erythematosus (SLE) is a complex systemic autoimmune disease characterized by the loss of tolerance to nuclear antigens, immune complex formation and inflammation in multiple organs. The disease is very heterogeneous, and most clinicians consider SLE as a group of diseases with similar features where the pathogenesis is driven by a combination of genetic and environmental factors. One of the most prominent features, shared by the majority of patients with SLE, is a continuous activation of the type I interferon (IFN) system, which manifests as increased serum levels of IFNα and/or an increased expression of type I IFN‐induced genes, a so‐called type I IFN signature. The mechanisms behind this IFN signature have partly been clarified during recent years, although the exact function of the IFN‐regulated genes in the disease process is unclear. In this review, we will describe the type I IFN system and its regulation and summarize the numerous findings implicating an important ethiopathogenic role of a dysregulated type I IFN system in SLE. Furthermore, strategies to therapeutically target the type I IFN system that are currently evaluated preclinically and in clinical trials will be mentioned.


Arthritis & Rheumatism | 2012

B lymphocytes enhance interferon-α production by plasmacytoid dendritic cells

Olof Berggren; Niklas Hagberg; Gert Weber; Gunnar V. Alm; Lars Rönnblom; Maija-Leena Eloranta

OBJECTIVE The type I interferon (IFN) system and B cells are activated in many autoimmune diseases, such as systemic lupus erythematosus (SLE). The IFNα produced by plasmacytoid dendritic cells (PDCs) stimulates several B cell functions, including autoantibody production. However, not much is known about how B cells influence PDC function. The aim of this study was to investigate the regulatory effect of B cells on IFNα production by PDCs. METHODS PDCs and B cells isolated from peripheral blood mononuclear cells from healthy blood donors were stimulated with RNA-containing immune complexes (ICs) consisting of U1 small nuclear RNP and SLE IgG, herpes simplex virus, or oligonucleotide (ODN) 2216, alone or in cocultures. IFNα, several other cytokines, and PDC- or B cell-associated surface molecules were analyzed using immunoassays or flow cytometry. RESULTS B cells enhanced IFNα production by PDCs up to 47-fold, and the effect was most pronounced for PDCs stimulated with RNA-containing ICs. Anti-CD31 antibody reduced RNA-containing IC-induced IFNα production by 80% but had no effect on IFNα production when ODN 2216 was used as an inducer. Supernatants from ODN 2216-stimulated B cells promoted IFNα production by PDCs, while supernatants from RNA-containing IC-stimulated B cells did not. CONCLUSION Our results showed that a novel function of B cells is enhancement of type I IFN production by PDCs. Because B cells are activated by type I IFN, this PDC-B cell cross-talk might be of fundamental importance in the etiopathogenesis of SLE and contribute to long-term immune activation in SLE and other systemic rheumatic diseases.


Annals of the Rheumatic Diseases | 2013

Genome-wide profiling of target genes for the systemic lupus erythematosus-associated transcription factors IRF5 and STAT4

Chuan Wang; Johanna K. Sandling; Niklas Hagberg; Olof Berggren; Snaevar Sigurdsson; Olof Karlberg; Lars Rönnblom; Maija-Leena Eloranta; Ann-Christine Syvänen

Background The transcription factors interferon regulatory factor 5 (IRF5) and signal transducer and activator of transcription 4 (STAT4) are encoded by two of the strongest susceptibility genes for systemic lupus erythematosus (SLE). Objective To investigate the target genes and functional roles of IRF5 and STAT4 in human peripheral blood mononuclear cells (PBMCs). Methods Chromatin immunoprecipitation-sequencing (ChIP-seq) was performed in PBMCs stimulated to activate IRF5 and STAT4. The expression of the target genes of IRF5 and STAT4 was investigated in a publicly available dataset generated from PBMCs from patients with SLE and healthy controls. The genomic regions bound by the transcription complexes mediated by IRF5 and STAT4 were examined for transcription factor binding motifs and SLE-associated sequence variants. Results More than 7000 target genes for IRF5 and STAT4 were identified in stimulated PBMCs. These genes were enriched to functional pathways in the type I interferon system, and have key roles in the inflammatory response. The expression patterns of the target genes were characteristic for patients with SLE. The transcription factors high mobility group-I/Y, specificity protein 1, and paired box 4 may function cooperatively with IRF5 and STAT4 in transcriptional regulation. Eight of the target regions for IRF5 and STAT4 contain SLE-associated sequence variants. Conclusions By participating in transcription complex with other co-factors, IRF5 and STAT4 harbour the potential of regulating a large number of target genes, which may contribute to their strong association with SLE.


Journal of Immunology | 2013

Systemic Lupus Erythematosus Immune Complexes Increase the Expression of SLAM Family Members CD319 (CRACC) and CD229 (LY-9) on Plasmacytoid Dendritic Cells and CD319 on CD56 dim NK Cells

Niklas Hagberg; Jakob Theorell; Heinrich Schlums; Maija-Leena Eloranta; Yenan T. Bryceson; Lars Rönnblom

Patients with systemic lupus erythematosus (SLE) display an activated type I IFN system due to unceasing IFN-α release from plasmacytoid dendritic cells (pDCs) stimulated by nucleic acid–containing immune complexes (ICs). NK cells strongly promote the IFN-α production by pDCs; therefore, we investigated surface molecules that could be involved in the pDC–NK cell cross-talk. In human PBMCs stimulated with RNA-containing ICs (RNA-ICs), the expression of the signaling lymphocyte activation molecule (SLAM) family receptors CD319 and CD229 on pDCs and CD319 on CD56dim NK cells was selectively increased. Upregulation of CD319 and CD229 on RNA-IC–stimulated pDCs was induced by NK cells or cytokines (e.g., GM-CSF, IL-3). IFN-α–producing pDCs displayed a higher expression of SLAM molecules compared with IFN-α− pDCs. With regard to signaling downstream of SLAM receptors, pDCs expressed SHIP-1, SHP-1, SHP-2, and CSK but lacked SLAM-associated protein (SAP) and Ewing’s sarcoma-activated transcript 2 (EAT2), indicating that these receptors may act as inhibitory receptors on pDCs. Furthermore, pDCs from patients with SLE had decreased expression of CD319 on pDCs and CD229 on CD56dim NK cells, but RNA-IC stimulation increased CD319 and CD229 expression. In conclusion, this study reveals that the expression of the SLAM receptors CD319 and CD229 is regulated on pDCs and NK cells by lupus ICs and that the expression of these receptors is specifically altered in SLE. These results, together with the observed genetic association between the SLAM locus and SLE, suggest a role for CD319 and CD229 in the SLE disease process.


Annals of the Rheumatic Diseases | 2016

Activated T cells enhance interferon-α production by plasmacytoid dendritic cells stimulated with RNA-containing immune complexes

Dag Leonard; Maija-Leena Eloranta; Niklas Hagberg; Olof Berggren; Karolina Tandre; Gunnar V. Alm; Lars Rönnblom

Objectives Patients with systemic lupus erythematosus (SLE) have an ongoing interferon-α (IFN-α) production by plasmacytoid dendritic cells (pDCs). We investigated whether T cells can promote IFN-α production by pDCs. Methods Human pDCs were stimulated with immune complexes (ICs) containing U1 small nuclear ribonucleic proteins particles and SLE-IgG (RNA-IC) in the presence of T cells or T cell supernatants. T cells were activated by anti-CD3/CD28 antibodies or in a mixed leucocyte reaction. IFN-α and other cytokines were determined in culture supernatants or patient sera with immunoassays. The effect of interleukin (IL) 3 and granulocyte-macrophage-colony-stimulating factor (GM-CSF) on pDCs was examined by the use of antibodies, and the expression of CD80/CD86 was determined using flow cytometry. Results Activated T cells and supernatants from activated T cells increased IFN-α production by >20-fold. The stimulatory effect of T cell supernatants was reduced after depletion of GM-CSF (81%) or by blocking the GM-CSF receptor (55%–81%). Supernatant from activated T cells, furthermore, increased the frequency of CD80 and CD86 expressing pDCs stimulated with RNA-IC from 6% to 35% (p<0.05) and from 10% to 26% (p<0.01), respectively. Activated SLE T cells enhanced IFN-α production to the same extent as T cells from healthy individuals and a subset of patients with SLE had increased serum levels of GM-CSF. Conclusions Activated T cells enhance IFN-α production by RNA-IC stimulated pDCs via GM-CSF and induce pDC maturation. Given the increased serum levels of GM-CSF in a subset of patients with SLE, these findings suggest that activated T cells may upregulate type I IFN production in SLE.


Arthritis & Rheumatism | 2015

Functional Anti-CD94/NKG2A and Anti-CD94/NKG2C Autoantibodies in Patients With Systemic Lupus Erythematosus

Niklas Hagberg; Jakob Theorell; Karin Hjorton; Pieter Spee; Maija-Leena Eloranta; Yenan T. Bryceson; Lars Rönnblom

Recently we serendipitously identified a patient with systemic lupus erythematosus (SLE) who was positive for autoantibodies to CD94/natural killer receptor group 2A (NKG2A). The present study was undertaken to investigate the occurrence and function of autoantibodies targeting lectin‐like NK cell receptors in SLE.


Rheumatology | 2013

Anti-NKG2A autoantibodies in a patient with systemic lupus erythematosus

Niklas Hagberg; Jakob Theorell; Maija-Leena Eloranta; Veronique Pascal; Yenan Bryceson; Lars Rönnblom

OBJECTIVES To characterize a novel anti-NKG2A autoantibody detected in a patient with SLE during a severe flare, and in a cross-sectional study investigate the occurrence of such autoantibodies in patients with SLE and primary SS (pSS). METHODS Serum or IgG from patients with SLE, pSS and healthy volunteers were assayed for blocking of anti-NKG2A or HLA-E binding to peripheral blood mononuclear cells or CD94/NKG2A- and CD94/NKG2C-transfected Ba/F3 cells. The anti-NKG2A autoantibodies were evaluated for effect on NK cell degranulation in response to HLA-E-transfected K562 cells. IFN-α was determined by an immunoassay and disease activity by the SLEDAI score. RESULTS Anti-NKG2A autoantibodies, which blocked binding of HLA-E tetramers to CD94/NKG2A-transfected cells and impaired NKG2A-mediated inhibition of NK cell activation, were observed in a patient with SLE. The presence of anti-NKG2A autoantibodies was associated with high SLE disease activity (SLEDAI score 14 and 16) and increased serum IFN-α. Of 94 SLE, 60 pSS and 30 healthy donor sera, only the index patient serum contained anti-NKG2A autoantibodies. CONCLUSION The presence of autoantibodies targeting NKG2A is a rare event, but when such autoantibodies occur they may promote excessive NK cell function. This can contribute to the pathogenesis by increasing the killing of cells and the release of autoantigens. Our findings highlight the possible importance of NK cells in the SLE disease process.


Annals of the Rheumatic Diseases | 2018

The STAT4 SLE risk allele rs7574865[T] is associated with increased IL-12-induced IFN-γ production in T cells from patients with SLE

Niklas Hagberg; Martin Joelsson; Dag Leonard; Sarah Reid; Maija-Leena Eloranta; John Mo; Magnus K Nilsson; Ann-Christine Syvänen; Yenan T. Bryceson; Lars Rönnblom

Objectives Genetic variants in the transcription factor STAT4 are associated with increased susceptibility to systemic lupus erythematosus (SLE) and a more severe disease phenotype. This study aimed to clarify how the SLE-associated intronic STAT4 risk allele rs7574865[T] affects the function of immune cells in SLE. Methods Peripheral blood mononuclear cells (PBMCs) were isolated from 52 genotyped patients with SLE. Phosphorylation of STAT4 (pSTAT4) and STAT1 (pSTAT1) in response to interferon (IFN)-α, IFN-γ or interleukin (IL)-12, total levels of STAT4, STAT1 and T-bet, and frequency of IFN-γ+ cells on IL-12 stimulation were determined by flow cytometry in subsets of immune cells before and after preactivation of cells with phytohaemagglutinin (PHA) and IL-2. Cellular responses and phenotypes were correlated to STAT4 risk allele carriership. Janus kinase inhibitors (JAKi) selective for TYK2 (TYK2i) or JAK2 (JAK2i) were evaluated for inhibition of IL-12 or IFN-γ-induced activation of SLE PBMCs. Results In resting PBMCs, the STAT4 risk allele was neither associated with total levels of STAT4 or STAT1, nor cytokine-induced pSTAT4 or pSTAT1. Following PHA/IL-2 activation, CD8+ T cells from STAT4 risk allele carriers displayed increased levels of STAT4 resulting in increased pSTAT4 in response to IL-12 and IFN-α, and an augmented IL-12-induced IFN-γ production in CD8+ and CD4+ T cells. The TYK2i and the JAK2i efficiently blocked IL-12 and IFN-γ-induced activation of PBMCs from STAT4 risk patients, respectively. Conclusions T cells from patients with SLE carrying the STAT4 risk allele rs7574865[T] display an augmented response to IL-12 and IFN-α. This subset of patients may benefit from JAKi treatment.


PLOS ONE | 2017

Plasmacytoid dendritic cells and RNA-containing immune complexes drive expansion of peripheral B cell subsets with an SLE-like phenotype

Olof Berggren; Niklas Hagberg; Andrei Alexsson; Gert Weber; Lars Rönnblom; Maija-Leena Eloranta

Background Hyperactive B cells and a continuous interferon (IFN)-α production by plasmacytoid dendritic cells (pDCs) play a key role in systemic lupus erythematosus (SLE). We asked whether the interaction between B cells and pDCs stimulated with RNA-containing immune complexes affects peripheral B cell subsets. Methods B cells and pDCs were isolated from blood of healthy individuals and stimulated with immune complexes consisting of SLE-IgG and U1snRNP (RNA-IC). Expression of cell surface molecules as well as IL-6 and IL-10 production were determined by flow cytometry and immunoassays. Gene expression profiles were determined by a NanoString nCounter expression array. Results We found a remarkable increase of double negative CD27-IgD- B cells, from 7% within fresh CD19+ B cells to 37% in the RNA-IC-stimulated co-cultures of B cells and pDCs, comparable to the frequency of double negative B cells in SLE patients. Gene expression analysis of the double negative CD27-IgD- and the CD27+IgD- memory B cells revealed that twenty-one genes were differentially expressed between the two B cell subsets (≥ 2-fold, p<0.001). The, IL21R, IL4R, CCL4, CCL3, CD83 and the IKAROS Family Zinc Finger 2 (IKZ2) showed higher expression in the double negative CD27-IgD- B cells. Conclusion The interactions between B cells and pDCs together with RNA-containing IC led to an expansion of B cells with similar phenotype as seen in SLE, suggesting that the pDC-B cell crosstalk contributes to the autoimmune feed-forward loop in SLE.

Collaboration


Dive into the Niklas Hagberg's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gunnar V. Alm

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jakob Theorell

Karolinska University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gert Weber

Free University of Berlin

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge