Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nikola-Michael Prpic is active.

Publication


Featured researches published by Nikola-Michael Prpic.


Developmental Biology | 2003

The expression of the proximodistal axis patterning genes Distal-less and dachshund in the appendages of Glomeris marginata (Myriapoda : Diplopoda) suggests a special role of these genes in patterning the head appendages

Nikola-Michael Prpic; Diethard Tautz

The genes Distal-less, dachshund, extradenticle, and homothorax have been shown in Drosophila to be among the earliest genes that define positional values along the proximal-distal (PD) axis of the developing legs. In order to study PD axis formation in the appendages of the pill millipede Glomeris marginata, we have isolated homologues of these four genes and have studied their expression patterns. In the trunk legs, there are several differences to Drosophila, but the patterns are nevertheless compatible with a conserved role in defining positional values along the PD axis. However, their role in the head appendages is apparently more complex. Distal-less in the mandible and maxilla is expressed in the forming sensory organs and, thus, does not seem to be involved in PD axis patterning. We could not identify in the mouthparts components that are homologous to the distal parts of the trunk legs and antennnae. Interestingly, there is also a transient premorphogenetic expression of Distal-less in the second antennal and second maxillary segment, although no appendages are eventually formed in these segments. The dachshund gene is apparently involved both in PD patterning as well as in sensory organ development in the antenna, maxilla, and mandible. Strong dachshund expression is specifically correlated with the tooth-like part of the mandible, a feature that is shared with other mandibulate arthropods. homothorax is expressed in the proximal and medial parts of the legs, while extradenticle RNA is only seen in the proximal region. This overlap of expression corresponds to the functional overlap between extradenticle and homothorax in Drosophila.


Evolution & Development | 2005

Pair rule gene orthologs in spider segmentation

Wim G. M. Damen; Ralf Janssen; Nikola-Michael Prpic

Summary The activation of pair rule genes is the first indication of the metameric organization of the Drosophila embryo and thus forms a key step in the segmentation process. There are two classes of pair rule genes in Drosophila: the primary pair rule genes that are directly activated by the maternal and gap genes and the secondary pair rule genes that rely on input from the primary pair rule genes. Here we analyze orthologs of Drosophila primary and secondary pair rule orthologs in the spider Cupiennius salei. The expression patterns of the spider pair rule gene orthologs can be subdivided in three groups: even‐skipped and runt‐1 expression is in stripes that start at the posterior end of the growth zone and their expression ends before the stripes reach the anterior end of the growth zone, while hairy and pairberry‐3 stripes also start at the posterior end, but do not cease in the anterior growth zone. Stripes of odd‐paired, odd‐skipped‐related‐1, and sloppy paired are only found in the anterior portion of the growth zone. The various genes thus seem to be active during different phases of segment specification. It is notable that the spider orthologs of the Drosophila primary pair rule genes are active more posterior in the growth zone and thus during earlier phases of segment specification than most orthologs of Drosophila secondary pair rule genes, indicating that parts of the hierarchy might be conserved between flies and spiders. The spider ortholog of the Drosophila pair rule gene fushi tarazu is not expressed in the growth zone, but is expressed in a Hox‐like fashion. The segmentation function of fushi tarazu thus appears to be a newly acquired role of the gene in the lineage of the mandibulate arthropods.


BioEssays | 2008

Cupiennius salei and Achaearanea tepidariorum: Spider models for investigating evolution and development

Alistair P. McGregor; Maarten Hilbrant; Matthias Pechmann; Evelyn E. Schwager; Nikola-Michael Prpic; Wim G. M. Damen

The spiders Cupiennius salei and Achaearanea tepidariorum are firmly established laboratory models that have already contributed greatly to answering evolutionary developmental questions. Here we appraise why these animals are such useful models from phylogeny, natural history and embryogenesis to the tools available for their manipulation. We then review recent studies of axis formation, segmentation, appendage development and neurogenesis in these spiders and how this has contributed to understanding the evolution of these processes. Furthermore, we discuss the potential of comparisons of silk production between Cupiennius and Achaearanea to investigate the origins and diversification of this evolutionary innovation. We suggest that further comparisons between these two spiders and other chelicerates will prove useful for understanding the evolution of development in metazoans.


Evolution & Development | 2010

Gene expression patterns in an onychophoran reveal that regionalization predates limb segmentation in pan-arthropods

Ralf Janssen; Bo Joakim Eriksson; Graham E. Budd; Michael Akam; Nikola-Michael Prpic

SUMMARY In arthropods, such as Drosophila melanogaster, the leg gap genes homothorax (hth), extradenticle (exd), dachshund (dac), and Distal‐less (Dll) regionalize the legs in order to facilitate the subsequent segmentation of the legs. We have isolated homologs of all four leg gap genes from the onychophoran Euperipatoides kanangrensis and have studied their expression. We show that leg regionalization takes place in the legs of onychophorans even though they represent simple and nonsegmented appendages. This implies that leg regionalization evolved for a different function and was only later co‐opted for a role in leg segmentation. We also show that the leg gap gene patterns in onychophorans (especially of hth and exd) are similar to the patterns in crustaceans and insects, suggesting that this is the plesiomorphic state in arthropods. The reversed hth and exd patterns in chelicerates and myriapods are therefore an apomorphy for this group, the Myriochelata, lending support to the Myriochelata and Tetraconata clades in arthropod phylogeny.


BMC Biology | 2017

The house spider genome reveals an ancient whole-genome duplication during arachnid evolution.

Evelyn E. Schwager; Prashant P. Sharma; Thomas H. Clarke; Daniel J. Leite; Torsten Wierschin; Matthias Pechmann; Yasuko Akiyama-Oda; Lauren Esposito; Jesper Bechsgaard; Trine Bilde; Alexandra D. Buffry; Hsu Chao; Huyen Dinh; HarshaVardhan Doddapaneni; Shannon Dugan; Cornelius Eibner; Cassandra G. Extavour; Peter Funch; Jessica E. Garb; Luis B. Gonzalez; Vanessa L. González; Sam Griffiths-Jones; Yi Han; Cheryl Y. Hayashi; Maarten Hilbrant; Daniel S.T. Hughes; Ralf Janssen; Sandra L. Lee; Ignacio Maeso; Shwetha C. Murali

BackgroundThe duplication of genes can occur through various mechanisms and is thought to make a major contribution to the evolutionary diversification of organisms. There is increasing evidence for a large-scale duplication of genes in some chelicerate lineages including two rounds of whole genome duplication (WGD) in horseshoe crabs. To investigate this further, we sequenced and analyzed the genome of the common house spider Parasteatoda tepidariorum.ResultsWe found pervasive duplication of both coding and non-coding genes in this spider, including two clusters of Hox genes. Analysis of synteny conservation across the P. tepidariorum genome suggests that there has been an ancient WGD in spiders. Comparison with the genomes of other chelicerates, including that of the newly sequenced bark scorpion Centruroides sculpturatus, suggests that this event occurred in the common ancestor of spiders and scorpions, and is probably independent of the WGDs in horseshoe crabs. Furthermore, characterization of the sequence and expression of the Hox paralogs in P. tepidariorum suggests that many have been subject to neo-functionalization and/or sub-functionalization since their duplication.ConclusionsOur results reveal that spiders and scorpions are likely the descendants of a polyploid ancestor that lived more than 450 MYA. Given the extensive morphological diversity and ecological adaptations found among these animals, rivaling those of vertebrates, our study of the ancient WGD event in Arachnopulmonata provides a new comparative platform to explore common and divergent evolutionary outcomes of polyploidization events across eukaryotes.


Development Genes and Evolution | 2004

Expression patterns of leg genes in the mouthparts of the spider Cupiennius salei (Chelicerata: Arachnida)

Nikola-Michael Prpic; Wim G. M. Damen

The leg genes extradenticle, homothorax, dachshund, and Distal-less define three antagonistic developmental domains in the legs, but not in the antenna, of Drosophila. Here we report the expression patterns of these leg genes in the prosomal appendages of the spider Cupiennius salei. The prosoma of the spider bears six pairs of appendages: a pair of cheliceres, a pair of pedipalps, and four pairs of walking legs. Three types of appendages thus can be distinguished in the spider. We show here that in the pedipalp, the leg-like second prosomal appendage, the patterns are very similar to those in the legs themselves, indicating the presence of three antagonistic developmental domains in both appendage types. In contrast, in the chelicera, the fang-like first prosomal appendage, the patterns are different and there is no evidence for antagonistic domains. Together with data from Drosophila this suggests that leg-shaped morphology of arthropod appendages requires an underlying set of antagonistic developmental domains, whereas other morphologies (e.g. antenna, chelicera) may result from the loss of such antagonistic domains.


Development Genes and Evolution | 2008

Evidence for Wg-independent tergite boundary formation in the millipede Glomeris marginata

Ralf Janssen; Graham E. Budd; Wim G. M. Damen; Nikola-Michael Prpic

The correlation between dorsal and ventral segmental units in diplopod myriapods is complex and disputed. Recent results with engrailed (en), hedgehog (hh), wingless (wg), and cubitus-interruptus (ci) have shown that the dorsal segments are patterned differently from the ventral segments. Ventrally, gene expression is compatible with the classical autoregulatory loop known from Drosophila to specify the parasegment boundary. In the dorsal segments, however, this Wg/Hh autoregulatory loop cannot be present because the observed gene expression patterns argue against the involvement of Wg signalling. In this paper, we present further evidence against an involvement of Wg signalling in dorsal segmentation and propose a hypothesis about how dorsal segmental boundaries may be controlled in a wg-independent way. We find that (1) the Notum gene, a modulator of the Wg gradient in Drosophila, is not expressed in the dorsal segments. (2) The H15/midline gene, a repressor of Wg action in Drosophila, is not expressed in the dorsal segments, except for future heart tissue. (3) The patched (ptc) gene, which encodes a Hh receptor, is strongly expressed in the dorsal segments, which is incompatible with Wg-Hh autoregulation. The available data suggest that anterior–posterior (AP) boundary formation in dorsal segments could instead rely on Dpp signalling rather than Wg signalling. We present a hypothesis that relies on Hh-mediated activation of Dpp signalling and optomotor-blind (omb) expression to establish the dorsal AP boundary (the future tergite boundary). The proposed mechanism is similar to the mechanism used to establish the AP boundary in Drosophila wings and ventral pleura.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Divergent role of the Hox gene Antennapedia in spiders is responsible for the convergent evolution of abdominal limb repression

Sara Khadjeh; Natascha Turetzek; Matthias Pechmann; Evelyn E. Schwager; Ernst A. Wimmer; Wim G. M. Damen; Nikola-Michael Prpic

Evolution often results in morphologically similar solutions in different organisms, a phenomenon known as convergence. However, there is little knowledge of the processes that lead to convergence at the genetic level. The genes of the Hox cluster control morphology in animals. They may also be central to the convergence of morphological traits, but whether morphological similarities also require similar changes in Hox gene function is disputed. In arthropods, body subdivision into a region with locomotory appendages (“thorax”) and a region with reduced appendages (“abdomen”) has evolved convergently in several groups, e.g., spiders and insects. In insects, legs develop in the expression domain of the Hox gene Antennapedia (Antp), whereas the Hox genes Ultrabithorax (Ubx) and abdominal-A mediate leg repression in the abdomen. Here, we show that, unlike Antp in insects, the Antp gene in the spider Achaearanea tepidariorum represses legs in the first segment of the abdomen (opisthosoma), and that Antp and Ubx are redundant in the following segment. The down-regulation of Antp in A. tepidariorum leads to a striking 10-legged phenotype. We present evidence from ectopic expression of the spider Antp gene in Drosophila embryos and imaginal tissue that this unique function of Antp is not due to changes in the Antp protein, but likely due to divergent evolution of cofactors, Hox collaborators or target genes in spiders and flies. Our results illustrate an interesting example of convergent evolution of abdominal leg repression in arthropods by altering the role of distinct Hox genes at different levels of their action.


Developmental Biology | 2009

Notch-mediated segmentation of the appendages is a molecular phylotypic trait of the arthropods.

Nikola-Michael Prpic; Wim G. M. Damen

Arthropod limbs are arguably the most diverse organs in the animal kingdom. Morphological diversity of the limbs is largely based on their segmentation, because this divides the limbs into modules that can evolve separately for new morphologies and functions. Limb segmentation also distinguishes the arthropods from related phyla (e.g. onychophorans) and thus forms an important evolutionary innovation in arthropods. Understanding the genetic basis of limb segmentation in arthropods can thus shed light onto the mechanisms of macroevolution and the origin of a character (articulated limbs) that defines a new phylum (arthropods). In the fly Drosophila limb segmentation and limb growth are controlled by the Notch signaling pathway. Here we show that the Notch pathway also controls limb segmentation and growth in the spider Cupiennius salei, a representative of the most basally branching arthropod group Chelicerata, and thus this function must trace from the last common ancestor of all arthropods. The similarities of Notch and Serrate function between Drosophila and Cupiennius are extensive and also extend to target genes like odd-skipped, nubbin, AP-2 and hairy related genes. Our data confirm that the jointed appendages, which are a morphological phylotypic trait of the arthropods and the basis for naming the phylum, have a common developmental genetic basis. Notch-mediated limb segmentation is thus a molecular phylotypic trait of the arthropods.


BMC Evolutionary Biology | 2010

A clustered set of three Sp-family genes is ancestral in the Metazoa: evidence from sequence analysis, protein domain structure, developmental expression patterns and chromosomal location

Nina D. Schaeper; Nikola-Michael Prpic; Ernst A. Wimmer

BackgroundThe Sp-family of transcription factors are evolutionarily conserved zinc finger proteins present in many animal species. The orthology of the Sp genes in different animals is unclear and their evolutionary history is therefore controversially discussed. This is especially the case for the Sp gene buttonhead (btd) which plays a key role in head development in Drosophila melanogaster, and has been proposed to have originated by a recent gene duplication. The purpose of the presented study was to trace orthologs of btd in other insects and reconstruct the evolutionary history of the Sp genes within the metazoa.ResultsWe isolated Sp genes from representatives of a holometabolous insect (Tribolium castaneum), a hemimetabolous insect (Oncopeltus fasciatus), primitively wingless hexapods (Folsomia candida and Thermobia domestica), and an amphipod crustacean (Parhyale hawaienis). We supplemented this data set with data from fully sequenced animal genomes. We performed phylogenetic sequence analysis with the result that all Sp factors fall into three monophyletic clades. These clades are also supported by protein domain structure, gene expression, and chromosomal location. We show that clear orthologs of the D. melanogaster btd gene are present even in the basal insects, and that the Sp5-related genes in the genome sequence of several deuterostomes and the basal metazoans Trichoplax adhaerens and Nematostella vectensis are also orthologs of btd.ConclusionsAll available data provide strong evidence for an ancestral cluster of three Sp-family genes as well as synteny of this Sp cluster and the Hox cluster. The ancestral Sp gene cluster already contained a Sp5/btd ortholog, which strongly suggests that btd is not the result of a recent gene duplication, but directly traces back to an ancestral gene already present in the metazoan ancestor.

Collaboration


Dive into the Nikola-Michael Prpic's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Schoppmeier

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Sara Khadjeh

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge