Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael Schoppmeier is active.

Publication


Featured researches published by Michael Schoppmeier.


Genome Biology | 2008

Exploring systemic RNA interference in insects: a genome-wide survey for RNAi genes in Tribolium

Yoshinori Tomoyasu; Sherry C. Miller; Shuichiro Tomita; Michael Schoppmeier; Daniela Grossmann; Gregor Bucher

BackgroundRNA interference (RNAi) is a highly conserved cellular mechanism. In some organisms, such as Caenorhabditis elegans, the RNAi response can be transmitted systemically. Some insects also exhibit a systemic RNAi response. However, Drosophila, the leading insect model organism, does not show a robust systemic RNAi response, necessitating another model system to study the molecular mechanism of systemic RNAi in insects.ResultsWe used Tribolium, which exhibits robust systemic RNAi, as an alternative model system. We have identified the core RNAi genes, as well as genes potentially involved in systemic RNAi, from the Tribolium genome. Both phylogenetic and functional analyses suggest that Tribolium has a somewhat larger inventory of core component genes than Drosophila, perhaps allowing a more sensitive response to double-stranded RNA (dsRNA). We also identified three Tribolium homologs of C. elegans sid-1, which encodes a possible dsRNA channel. However, detailed sequence analysis has revealed that these Tribolium homologs share more identity with another C. elegans gene, tag-130. We analyzed tag-130 mutants, and found that this gene does not have a function in systemic RNAi in C. elegans. Likewise, the Tribolium sid-like genes do not seem to be required for systemic RNAi. These results suggest that insect sid-1-like genes have a different function than dsRNA uptake. Moreover, Tribolium lacks homologs of several genes important for RNAi in C. elegans.ConclusionAlthough both Tribolium and C. elegans show a robust systemic RNAi response, our genome-wide survey reveals significant differences between the RNAi mechanisms of these organisms. Thus, insects may use an alternative mechanism for the systemic RNAi response. Understanding this process would assist with rendering other insects amenable to systemic RNAi, and may influence pest control approaches.


Nature | 2003

Involvement of Notch and Delta genes in spider segmentation

Angelika Stollewerk; Michael Schoppmeier; Wim G. M. Damen

It is currently debated whether segmentation in different animal phyla has a common origin and shares a common genetic mechanism. The apparent use of different genetic networks in arthropods and vertebrates has become a strong argument against a common origin of segmentation. Our knowledge of arthropod segmentation is based mainly on the insect Drosophila, in which a hierarchical cascade of transcription factors controls segmentation. The function of some of these genes seems to be conserved among arthropods, including spiders, but not vertebrates. The Notch pathway has a key role in vertebrate segmentation (somitogenesis) but is not involved in Drosophila body segmentation. Here we show that Notch and Delta genes are involved in segmentation of another arthropod, the spider Cupiennius salei. Expression patterns of Notch and Delta, coupled with RNA interference experiments, identify many similarities between spider segmentation and vertebrate somitogenesis. Our data indicate that formation of the segments in arthropods and vertebrates may have shared a genetic programme in a common ancestor and that parts of this programme have been lost in particular descendant lineages.


Development Genes and Evolution | 2001

Double-stranded RNA interference in the spider Cupiennius salei: the role of Distal-less is evolutionarily conserved in arthropod appendage formation.

Michael Schoppmeier; Wim G. M. Damen

Abstract. Chelicerates represent a basal arthropod group, which makes them an excellent system for the study of evolutionary processes in arthropods. To enable functional studies in chelicerates, we developed a double-stranded RNA-interference (RNAi) protocol for spiders while studying the function of the Distal-less gene. We isolated the Distal-less gene from the spider Cupiennius salei. Cs-Dll gene expression is first seen in cells of the prosomal segments before the outgrowth of the appendages. After the appendages have formed, Cs-Dll is expressed in the distal portion of the prosomal appendages, and in addition, in the labrum, in two pairs of opisthosmal (abdominal) limb buds, in the head region, and at the posterior-most end of the spider embryo. In embryos, in which Dll was silenced by RNAi, the distal part of the prosomal appendages was missing and the labrum was completely absent. Thus, Dll also plays a crucial role in labrum formation. However, the complete lack of labrum in RNAi embryos may point to a different nature of the labrum from the segmental appendages. Our data show that the expression of Dll in the appendages is conserved among arthropods, and furthermore that the role of Dll is evolutionarily conserved in the formation of segmental appendages in arthropods.


Current Biology | 2005

Maternal Torso Signaling Controls Body Axis Elongation in a Short Germ Insect

Michael Schoppmeier; Reinhard Schröder

In the long germ insect Drosophila, all body segments are determined almost simultaneously at the blastoderm stage under the control of the anterior, the posterior, and the terminal genetic system . Most other arthropods (and similarly also vertebrates) develop more slowly as short germ embryos, where only the anterior body segments are specified early in embryogenesis. The body axis extends later by the sequential addition of new segments from the growth zone or the tail bud . The mechanisms that initiate or maintain the elongation of the body axis (axial growth) are poorly understood . We functionally analyzed the terminal system in the short germ insect Tribolium. Unexpectedly, Torso signaling is required for setting up or maintaining a functional growth zone and at the anterior for the extraembryonic serosa. Thus, as in Drosophila, fates at both poles of the blastoderm embryo depend on terminal genes, but different tissues are patterned in Tribolium. Short germ development as seen in Tribolium likely represents the ancestral mode of how the primary body axis is set up during embryogenesis. We therefore conclude that the ancient function of the terminal system mainly was to define a growth zone and that in phylogenetically derived insects like Drosophila, Torso signaling became restricted to the determination of terminal body structures.


Nucleic Acids Research | 2015

iBeetle-Base: a database for RNAi phenotypes in the red flour beetle Tribolium castaneum

Jürgen Dönitz; Christian Schmitt-Engel; Daniela Grossmann; Lizzy Gerischer; Maike Tech; Michael Schoppmeier; Martin Klingler; Gregor Bucher

The iBeetle-Base (http://ibeetle-base.uni-goettingen.de) makes available annotations of RNAi phenotypes, which were gathered in a large scale RNAi screen in the red flour beetle Tribolium castaneum (iBeetle screen). In addition, it provides access to sequence information and links for all Tribolium castaneum genes. The iBeetle-Base contains the annotations of phenotypes of several thousands of genes knocked down during embryonic and metamorphic epidermis and muscle development in addition to phenotypes linked to oogenesis and stink gland biology. The phenotypes are described according to the EQM (entity, quality, modifier) system using controlled vocabularies and the Tribolium morphological ontology (TrOn). Furthermore, images linked to the respective annotations are provided. The data are searchable either for specific phenotypes using a complex ‘search for morphological defects’ or a ‘quick search’ for gene names and IDs. The red flour beetle Tribolium castaneum has become an important model system for insect functional genetics and is a representative of the most species rich taxon, the Coleoptera, which comprise several devastating pests. It is used for studying insect typical development, the evolution of development and for research on metabolism and pest control. Besides Drosophila, Tribolium is the first insect model organism where large scale unbiased screens have been performed.


Nature Communications | 2015

The iBeetle large-scale RNAi screen reveals gene functions for insect development and physiology

Christian Schmitt-Engel; Dorothea Schultheis; Nadi Ströhlein; Nicole Troelenberg; Upalparna Majumdar; Van Anh Dao; Daniela Grossmann; Tobias Richter; Maike Tech; Jürgen Dönitz; Lizzy Gerischer; Mirko Theis; Inga Schild; Jochen Trauner; Nikolaus Koniszewski; Elke Küster; Sebastian Kittelmann; Yonggang Hu; Sabrina Lehmann; Janna Siemanowski; Julia Ulrich; Kristen A. Panfilio; Reinhard Schröder; Burkhard Morgenstern; Mario Stanke; Frank Buchhholz; Manfred Frasch; Siegfried Roth; Ernst A. Wimmer; Michael Schoppmeier

Genetic screens are powerful tools to identify the genes required for a given biological process. However, for technical reasons, comprehensive screens have been restricted to very few model organisms. Therefore, although deep sequencing is revealing the genes of ever more insect species, the functional studies predominantly focus on candidate genes previously identified in Drosophila, which is biasing research towards conserved gene functions. RNAi screens in other organisms promise to reduce this bias. Here we present the results of the iBeetle screen, a large-scale, unbiased RNAi screen in the red flour beetle, Tribolium castaneum, which identifies gene functions in embryonic and postembryonic development, physiology and cell biology. The utility of Tribolium as a screening platform is demonstrated by the identification of genes involved in insect epithelial adhesion. This work transcends the restrictions of the candidate gene approach and opens fields of research not accessible in Drosophila.


Development | 2010

Apparent role of Tribolium orthodenticle in anteroposterior blastoderm patterning largely reflects novel functions in dorsoventral axis formation and cell survival

Kay Kotkamp; Martin Klingler; Michael Schoppmeier

In the short-germ beetle Tribolium castaneum, the head gap gene orthodenticle (Tc-otd) has been proposed to functionally substitute for bicoid, the anterior morphogen unique to higher dipterans. In this study we reanalyzed the function of Tc-otd. We obtained a similar range of cuticle phenotypes as in previously described RNAi experiments; however, we noticed unexpected effects on blastodermal cell fates. First, we found that Tc-otd is essential for dorsoventral patterning. RNAi depletion results in lateralized embryos, a fate map change that by itself can explain the observed loss of the anterior head, which is a ventral anlage in Tribolium. We find that this effect is due to diminished expression of short gastrulation (sog), a gene essential for establishment of the Decapentaplegic (Dpp) gradient in this species. Second, we found that gnathal segment primordia in Tc-otd RNAi embryos are shifted anteriorly but otherwise appear patterned normally. This anteroposterior (AP) fate map shift might largely be due to diminished zen-1 expression and is not responsible for the severe segmentation defects observed in some Tc-otd RNAi embryos. As neither Tc-sog nor Tc-zen-1 probably requires Otd gradient-mediated positional information, we posit that the blastoderm function of Tc-Otd depends on its initial homogeneous maternal expression and that this maternal factor does not provide significant positional information for Tribolium blastoderm embryos.


Journal of Biological Chemistry | 2013

Sodium solute symporter and cadherin proteins act as Bacillus thuringiensis Cry3Ba toxin functional receptors in Tribolium castaneum.

Estefanía Contreras; Michael Schoppmeier; M. Dolores Real; Carolina Rausell

Background: Interaction with insect midgut receptors is required for Bacillus thuringienesis (Bt) toxicity. Results: RNAi knockdown of E-cadherin and sodium solute symporter (SSS) genes dramatically decreases Tribolium castaneum (Tc) larval susceptibility to Cry3Ba. A SSS fragment enhances Cry3Ba toxicity. Conclusion: E-cadherin and SSS but not aminopeptidase N are Cry3Ba receptors in Tc. Significance: For the first time, SSS was demonstrated as a Bt functional receptor. Understanding how Bacillus thuringiensis (Bt) toxins interact with proteins in the midgut of susceptible coleopteran insects is crucial to fully explain the molecular bases of Bt specificity and insecticidal action. In this work, aminopeptidase N (TcAPN-I), E-cadherin (TcCad1), and sodium solute symporter (TcSSS) have been identified by ligand blot as putative Cry3Ba toxin-binding proteins in Tribolium castaneum (Tc) larvae. RNA interference knockdown of TcCad1 or TcSSS proteins resulted in decreased susceptibility to Cry3Ba toxin, demonstrating the Cry toxin receptor functionality for these proteins. In contrast, TcAPN-I silencing had no effect on Cry3Ba larval toxicity, suggesting that this protein is not relevant in the Cry3Ba toxin mode of action in Tc. Remarkable features of TcSSS protein were the presence of cadherin repeats in its amino acid sequence and that a TcSSS peptide fragment containing a sequence homologous to a binding epitope found in Manduca sexta and Tenebrio molitor Bt cadherin functional receptors enhanced Cry3Ba toxicity. This is the first time that the involvement of a sodium solute symporter protein as a Bt functional receptor has been demonstrated. The role of this novel receptor in Bt toxicity against coleopteran insects together with the lack of receptor functionality of aminopeptidase N proteins might account for some of the differences in toxin specificity between Lepidoptera and Coleoptera insect orders.


CSH Protocols | 2008

Whole-Mount In Situ Hybridization of Spider Embryos

Nikola-Michael Prpic; Michael Schoppmeier; Wim G. M. Damen

INTRODUCTIONThe spider Cupiennius salei, commonly known as the American wandering spider, is a particularly useful laboratory model for embryological studies because of the availability of tools to study and manipulate its embryonic development. Cupiennius is used to study axis formation, segmentation, appendage development, neurogenesis, and silk production. These studies contribute to our understanding of the evolution of these processes, but they also help us to understand the origin and diversification of evolutionary novelties. Comparisons between spiders and insects can show the degree of conservation and divergence of developmental mechanisms during arthropod evolution. Any embryological feature conserved between spiders and insects is likely to represent an ancestral feature for arthropods. Comparative molecular embryological work in insects and spiders should eventually allow us to define a molecular archetype for the phylum Arthropoda. This in itself will be a necessary cornerstone for comparing the different metazoan phyla, including chordates. This protocol describes the detection of transcripts in fixed C. salei embryos using whole-mount in situ hybridization.


Frontiers in Zoology | 2012

Opposing effects of Notch-signaling in maintaining the proliferative state of follicle cells in the telotrophic ovary of the beetle Tribolium

Daniel Bäumer; Nadi Ströhlein; Michael Schoppmeier

IntroductionEstablishment of distinct follicle cell fates at the early stages of Drosophila oogenesis is crucial for achieving proper morphology of individual egg chambers. In Drosophila oogenesis, Notch-signaling controls proliferation and differentiation of follicular cells, which eventually results in the polarization of the anterior-posterior axis of the oocyte. Here we analyzed the functions of Tribolium Notch-signaling factors during telotrophic oogenesis, which differs fundamentally from the polytrophic ovary of Drosophila.ResultsWe found Notch-signaling to be required for maintaining the mitotic cycle of somatic follicle cells. Upon Delta RNAi, follicle cells enter endocycle prematurely, which affects egg-chamber formation and patterning. Interestingly, our results indicate that Delta RNAi phenotypes are not solely due to the premature termination of cell proliferation. Therefore, we monitored the terminal/stalk cell precursor lineage by molecular markers. We observed that upon Delta RNAi terminal and stalk cell populations were absent, suggesting that Notch-signaling is also required for the specification of follicle cell populations, including terminal and stalk precursor cells.ConclusionsWe demonstrate that with respect to mitotic cycle/endocycle switch Notch-signaling in Tribolium and Drosophila has opposing effects. While in Drosophila a Delta-signal brings about the follicle cells to leave mitosis, Notch-signaling in Tribolium is necessary to retain telotrophic egg-chambers in an “immature” state. In most instances, Notch-signaling is involved in maintaining undifferentiated (or preventing specialized) cell fates. Hence, the role of Notch in Tribolium may reflectthe ancestral function of Notch-signaling in insect oogenesis.The functions of Notch-signaling in patterning the follicle cell epithelium suggest that Tribolium oogenesis may - analogous to Drosophila - involve the stepwise determination of different follicle cell populations. Moreover, our results imply that Notch-signaling may contribute at least to some aspects of oocyte polarization and AP axis also in telotrophic oogenesis.

Collaboration


Dive into the Michael Schoppmeier's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nadi Ströhlein

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Alexander C. Cerny

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Daniel Bäumer

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Dorothea Schultheis

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Gregor Bucher

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar

Jochen Trauner

University of Erlangen-Nuremberg

View shared research outputs
Researchain Logo
Decentralizing Knowledge