Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nikolaos Dimoudis is active.

Publication


Featured researches published by Nikolaos Dimoudis.


Cancer Research | 2013

RG7116, a therapeutic antibody that binds the inactive HER3 receptor and is optimized for immune effector activation

Christian Mirschberger; Christian Schiller; Michael Schräml; Nikolaos Dimoudis; Thomas Friess; Christian Gerdes; Ulrike Reiff; Valeria Lifke; Gabriele Hoelzlwimmer; Irene Kolm; Karl-Peter Hopfner; Gerhard Niederfellner; Birgit Bossenmaier

The EGF receptor (EGFR) HER3 is emerging as an attractive cancer therapeutic target due to its central position in the HER receptor signaling network. HER3 amplifies phosphoinositide 3-kinase (PI3K)-driven tumorigenesis and its upregulation in response to other anti-HER therapies has been implicated in resistance to them. Here, we report the development and characterization of RG7116, a novel anti-HER3 monoclonal antibody (mAb) designed to block HER3 activation, downregulate HER3, and mediate enhanced antibody-dependent cell-mediated cytotoxicity (ADCC) via glycoengineering of the Fc moiety. Biochemical studies and X-ray crystallography revealed that RG7116 bound potently and selectively to domain 1 of human HER3. Heregulin binding was prevented by RG7116 at concentrations more than 1 nmol/L as was nearly complete inhibition of HER3 heterodimerization and phosphorylation, thereby preventing downstream AKT phosphorylation. In vivo RG7116 treatment inhibited xenograft tumor growth up to 90% relative to controls in a manner accompanied by downregulation of cell surface HER3. RG7116 efficacy was further enhanced in combination with anti-EGFR (RG7160) or anti-HER2 (pertuzumab) mAbs. Furthermore, the ADCC potency of RG7116 was enhanced compared with the nonglycoengineered parental antibody, both in vitro and in orthotopic tumor xenograft models, where an increased median survival was documented. ADCC degree achieved in vitro correlated with HER3 expression levels on tumor cells. In summary, the combination of strong signaling inhibition and enhanced ADCC capability rendered RG7116 a highly potent HER3-targeting agent suitable for clinical development.


Archives of Biochemistry and Biophysics | 2012

Development of tetravalent IgG1 dual targeting IGF-1R–EGFR antibodies with potent tumor inhibition

Rebecca Croasdale; Katharina Wartha; Juergen Michael Schanzer; Klaus-Peter Kuenkele; Carola Ries; Klaus Mayer; Christian Gassner; Martina Wagner; Nikolaos Dimoudis; Sylvia Herter; Christiane Jaeger; Claudia Ferrara; Eike Hoffmann; Lothar Kling; Wilma Lau; Roland F Staack; Julia Heinrich; Werner Scheuer; Jan Olaf Stracke; Christian Gerdes; Ulrich Brinkmann; Pablo Umana; Christian Klein

In this study we present novel bispecific antibodies that simultaneously target the insulin-like growth factor receptor type I (IGF-1R) and epidermal growth factor receptor (EGFR). For this purpose disulfide stabilized scFv domains of the EGFR/ADCC antibody GA201 were fused via serine-glycine connectors to the C-terminus of the heavy (XGFR2) or light chain (XGFR4), or the N-termini of the light (XGFR5) or heavy chain (XGFR3) of the IGF-1R antibody R1507 as parental IgG1 antibody. The resulting bispecific IGF-1R-EGFR antibodies XGFR2, XGFR3 and XGFR4 were successfully generated with yields and stability comparable to conventional IgG1 antibodies. They effectively inhibited IGF-1R and EGFR phosphorylation and 3D proliferation of H322M and H460M2 tumor cells, induced strong down-modulation of IGF-1R as well as enhanced EGFR down-modulation compared to the parental EGFR antibody GA201 and were ADCC competent. The bispecific XGFR derivatives showed a strong format dependent influence of N- or C-terminal heavy and light chain scFv attachment on ADCC activity and an increase in receptor downregulation over the parental combination in vitro. XGFR2 and XGFR4 were selected for in vivo evaluation and showed potent anti-tumoral efficacy comparable to the combination of monospecific IGF-1R and EGFR antibodies in subcutaneous BxPC3 and H322M xenograft models. In summary, we have managed to overcome issues of stability and productivity of bispecific antibodies, discovered important antibody fusion protein design related differences on ADCC activity and receptor downmodulation and show that IGF-1R-EGFR antibodies represent an attractive therapeutic strategy to simultaneously target two key components de-regulated in multiple cancer types, with the ultimate goal to avoid the formation of resistance to therapy.


Cancer Research | 2012

Abstract 2508: GE-huMab-HER3, a novel humanized, glycoengineered HER3 antibody with enhanced ADCC and superior preclinical in vitro and in vivo efficacy

Birgit Bossenmaier; Thomas Friess; Christian Gerdes; Irene Kolm; Nikolaos Dimoudis; Valeria Lifke; Ulrike Reiff; Ekkehard Moessner; Gabriele Hoelzlwimmer; Thomas von Hirschheydt; Helmut Burtscher; Gerhard Niederfellner

HER3 is a member of the Human Epidermal Growth Factor Receptor (HER) family. HER3 is a kinase dead receptor, but by forming heterodimers with other HER family receptors, HER3 works as amplifier for PI3 kinase driven tumorigenesis. It has been reported that tumors treated with EGFR-, HER2- or cMET-targeted therapies can escape via HER3 activation or upregulation. HER3 is expressed in a large variety of tumors for example in non-small cell lung cancer (NSCLC), head and neck, colorectal, gastric, pancreatic, breast, ovarian and prostate cancer. Anti-HER3 antibodies can work via various mechanisms including: (1) blocking ligand (HRGs) binding to the receptor, (2) blocking heterodimerization with other HER family members (HER1, 2 and 4), (3) downregulation of the receptor from the cell surface, and (4) engaging immune effector functions such as antibody-dependent cellular cytotoxicity (ADCC). The first three mechanisms lead to inhibition of HER3 phosphorylation and downstream signaling thereby resulting in tumor cell growth inhibition, while ADCC is a mechanism of direct target cell killing triggered by cross-linking of Fc receptors on immune effector cells (e.g. NK cells, macrophages). GE-huMab-HER3 is a novel humanized and glycoengineered IgG1 antibody that binds to HER3 with high affinity. This antibody prevents ligand binding and receptor heterodimerization thereby blocking receptor phosphorylation. In various tumor xenograft models treatment with this antibody leads to substantial tumor growth inhibition. E.g. GE-huMab-HER3 treatment achieved >50% tumor growth inhibition in 10 out of 17 NSCLC models and in some cases even resulted in complete tumor remission. However, these xenograft experiments only reveal part of this antibody9s therapeutic potential. A unique feature of GE-huMab-HER3 that differentiates it from other anti-HER3 antibodies, including AMG 888 and MM-121, is its ability to bind to human FcgRIIIa on immune effector cells with a 50-fold higher affinity than standard IgG1 antibodies, a property conferred by the engineered glycosylation of the antibody Fc region. Consequently, GE-huMab-HER3 exhibits superior potency and efficacy in ADCC, as shown in vitro using recombinant A549 cells and in vivo by its Fc mediated greater anti-tumor effect in A549 orthotopic mouse models compared to a non-glyco-engineered variant of the antibody, WT-huMab-HER3. The combination of strong signaling inhibition and enhanced ADCC capability renders GE-huMabHER3 a highly potent HER3-targeting agent. Phase I clinical testing of this promising novel compound is ongoing. Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the 103rd Annual Meeting of the American Association for Cancer Research; 2012 Mar 31-Apr 4; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2012;72(8 Suppl):Abstract nr 2508. doi:1538-7445.AM2012-2508


Archive | 2011

Antibodies against human csf-1r and uses thereof

Nikolaos Dimoudis; Georg Fertig; Alexander Fidler; Klaus Kaluza; Marlene Thomas; Carola Ries; Stefan Seeber; Martin Lanzendoerfer


Archive | 2010

Antibodies binding preferentially human csf1r extracellular domain 4 and their use

Nikolaos Dimoudis; Georg Fertig; Alexander Fidler; Klaus Kaluza; Marlene Pickl; Carola Ries; Stefan Seeber; Martin Lanzendoerfer


Archive | 2010

Anti-her3 antibodies and uses thereof

Birgit Bossenmaier; Nikolaos Dimoudis; Thomas Friess; Guy Georges; Irene Kolm; Hans-Willi Krell; Valeria Lifke; Ekkehard Moessner


Archive | 2003

Novel amino-substituted dihydropyrimido[4,5-d]pyrimidinone derivatives, their manufacture and use as pharmaceutical agents

Jianping Cai; Nikolaos Dimoudis; Konrad Honold; Kin-Chun Luk; Stefan Scheiblich; Hilke Sudergat; Georg Tiefenthaler; Oliver Tonn


Archive | 1995

Keratinocytes attached to microcarriers for treatment of skin wounds

Nikolaos Dimoudis; Anton Hartinger


Archive | 2009

Antibodies against human il 17 and uses thereof

Johannes Auer; Nikolaos Dimoudis; Guy Georges; Petra Hanke; Hendrik Knoetgen; Claire Louise Langrish; Ekkehard Moessner


Archive | 2009

Antibodies against human IL17 and uses thereof

Johannes Auer; Nikolaos Dimoudis; Guy Georges; Petra Hanke; Hendrik Knoetgen; Ekkehard Moessner; Claire Louise Langrish

Collaboration


Dive into the Nikolaos Dimoudis's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge