Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nikolaos Kanellakis is active.

Publication


Featured researches published by Nikolaos Kanellakis.


Journal of Clinical Investigation | 2015

Mast cells mediate malignant pleural effusion formation

Anastasios D. Giannou; Antonia Marazioti; Magda Spella; Nikolaos Kanellakis; Hara Apostolopoulou; Ioannis Psallidas; Zeljko M. Prijovich; Malamati Vreka; Dimitra Zazara; Ioannis Lilis; Vassilios Papaleonidopoulos; Chrysoula A. Kairi; Alexandra L. Patmanidi; Ioanna Giopanou; Nikolitsa Spiropoulou; Vaggelis Harokopos; Vassilis Aidinis; Dionisios Spyratos; Stamatia Teliousi; Helen Papadaki; Stavros Taraviras; Linda A. Snyder; Oliver Eickelberg; Dimitrios Kardamakis; Yoichiro Iwakura; Thorsten B. Feyerabend; Hans Reimer Rodewald; Ioannis Kalomenidis; Timothy S. Blackwell; Theodora Agalioti

Mast cells (MCs) have been identified in various tumors; however, the role of these cells in tumorigenesis remains controversial. Here, we quantified MCs in human and murine malignant pleural effusions (MPEs) and evaluated the fate and function of these cells in MPE development. Evaluation of murine MPE-competent lung and colon adenocarcinomas revealed that these tumors actively attract and subsequently degranulate MCs in the pleural space by elaborating CCL2 and osteopontin. MCs were required for effusion development, as MPEs did not form in mice lacking MCs, and pleural infusion of MCs with MPE-incompetent cells promoted MPE formation. Once homed to the pleural space, MCs released tryptase AB1 and IL-1β, which in turn induced pleural vasculature leakiness and triggered NF-κB activation in pleural tumor cells, thereby fostering pleural fluid accumulation and tumor growth. Evaluation of human effusions revealed that MCs are elevated in MPEs compared with benign effusions. Moreover, MC abundance correlated with MPE formation in a human cancer cell-induced effusion model. Treatment of mice with the c-KIT inhibitor imatinib mesylate limited effusion precipitation by mouse and human adenocarcinoma cells. Together, the results of this study indicate that MCs are required for MPE formation and suggest that MC-dependent effusion formation is therapeutically addressable.


European Respiratory Review | 2016

Malignant pleural mesothelioma: an update on investigation, diagnosis and treatment.

Anna C. Bibby; Selina Tsim; Nikolaos Kanellakis; Hannah Ball; Denis C. Talbot; Kevin G. Blyth; Nick A Maskell; Ioannis Psallidas

Malignant pleural mesothelioma is an aggressive malignancy of the pleural surface, predominantly caused by prior asbestos exposure. There is a global epidemic of malignant pleural mesothelioma underway, and incidence rates are predicted to peak in the next few years. This article summarises the epidemiology and pathogenesis of malignant pleural mesothelioma, before describing some key factors in the patient experience and outlining common symptoms. Diagnostic approaches are reviewed, including imaging techniques and the role of various biomarkers. Treatment options are summarised, including the importance of palliative care and methods of controlling pleural effusions. The evidence for chemotherapy, radiotherapy and surgery is reviewed, both in the palliative setting and in the context of trimodality treatment. An algorithm for managing malignant pleural effusion in malignant pleural mesothelioma patients is presented. Finally new treatment developments and novel therapeutic approaches are summarised. This article on mesothelioma describes pathogenesis, symptoms, diagnostic approaches and treatment options http://ow.ly/cjkb305aQGz


Seminars in Cell & Developmental Biology | 2014

Licensing of DNA replication, cancer, pluripotency and differentiation: An interlinked world?

S. Champeris Tsaniras; Nikolaos Kanellakis; Ioanna-Eleni Symeonidou; P. Nikolopoulou; Zoi Lygerou; Stavros Taraviras

Recent findings provide evidence for a functional interplay between DNA replication and the seemingly distinct areas of cancer, development and pluripotency. Protein complexes participating in DNA replication origin licensing are now known to have roles in development, while their deregulation can lead to cancer. Moreover, transcription factors implicated in the maintenance of or reversal to the pluripotent state have links to the pre-replicative machinery. Several studies have shown that overexpression of these factors is associated to cancer.


Embo Molecular Medicine | 2017

Oncolytic adenovirus expressing bispecific antibody targets T-cell cytotoxicity in cancer biopsies.

Joshua Freedman; Joachim Hagel; Eleanor M. Scott; Ioannis Psallidas; Avinash Gupta; Laura Spiers; Paul S. Miller; Nikolaos Kanellakis; Rebecca Ashfield; Kerry D. Fisher; Margaret R. Duffy; Leonard W. Seymour

Oncolytic viruses exploit the cancer cell phenotype to complete their lytic life cycle, releasing progeny virus to infect nearby cells and repeat the process. We modified the oncolytic group B adenovirus EnAdenotucirev (EnAd) to express a bispecific single‐chain antibody, secreted from infected tumour cells into the microenvironment. This bispecific T‐cell engager (BiTE) binds to EpCAM on target cells and cross‐links them to CD3 on T cells, leading to clustering and activation of both CD4 and CD8 T cells. BiTE transcription can be controlled by the virus major late promoter, limiting expression to cancer cells that are permissive for virus replication. This approach can potentiate the cytotoxicity of EnAd, and we demonstrate using primary pleural effusions and peritoneal malignant ascites that infection of cancer cells with the BiTE‐expressing EnAd leads to activation of endogenous T cells to kill endogenous tumour cells despite the immunosuppressive environment. In this way, we have armed EnAd to combine both direct oncolysis and T cell‐mediated killing, yielding a potent therapeutic that should be readily transferred into the clinic.


Nature Communications | 2017

Mutant KRAS promotes malignant pleural effusion formation

Theodora Agalioti; Anastasios D. Giannou; Anthi Krontira; Nikolaos Kanellakis; Danai Kati; Malamati Vreka; Mario Pepe; Magda Spella; Ioannis Lilis; Dimitra Zazara; Eirini Nikolouli; Nikolitsa Spiropoulou; Andreas Papadakis; Konstantina Papadia; Apostolos Voulgaridis; Vaggelis Harokopos; Panagiota Stamou; Silke Meiners; Oliver Eickelberg; Linda A. Snyder; Sophia G. Antimisiaris; Dimitrios Kardamakis; Ioannis Psallidas; Antonia Marazioti; Georgios T. Stathopoulos

Malignant pleural effusion (MPE) is the lethal consequence of various human cancers metastatic to the pleural cavity. However, the mechanisms responsible for the development of MPE are still obscure. Here we show that mutant KRAS is important for MPE induction in mice. Pleural disseminated, mutant KRAS bearing tumour cells upregulate and systemically release chemokine ligand 2 (CCL2) into the bloodstream to mobilize myeloid cells from the host bone marrow to the pleural space via the spleen. These cells promote MPE formation, as indicated by splenectomy and splenocyte restoration experiments. In addition, KRAS mutations are frequently detected in human MPE and cell lines isolated thereof, but are often lost during automated analyses, as indicated by manual versus automated examination of Sanger sequencing traces. Finally, the novel KRAS inhibitor deltarasin and a monoclonal antibody directed against CCL2 are equally effective against an experimental mouse model of MPE, a result that holds promise for future efficient therapies against the human condition.


Embo Molecular Medicine | 2017

NRAS destines tumor cells to the lungs

Anastasios D. Giannou; Antonia Marazioti; Nikolaos Kanellakis; Ioanna Giopanou; Ioannis Lilis; Dimitra Zazara; Giannoula Ntaliarda; Danai Kati; Vasileios Armenis; Georgia Giotopoulou; Anthi Krontira; Marina Lianou; Theodora Agalioti; Malamati Vreka; Maria Papageorgopoulou; Sotirios Fouzas; Dimitrios Kardamakis; Ioannis Psallidas; Magda Spella; Georgios T. Stathopoulos

The lungs are frequently affected by cancer metastasis. Although NRAS mutations have been associated with metastatic potential, their exact role in lung homing is incompletely understood. We cross‐examined the genotype of various tumor cells with their ability for automatic pulmonary dissemination, modulated NRAS expression using RNA interference and NRAS overexpression, identified NRAS signaling partners by microarray, and validated them using Cxcr1‐ and Cxcr2‐deficient mice. Mouse models of spontaneous lung metastasis revealed that mutant or overexpressed NRAS promotes lung colonization by regulating interleukin‐8‐related chemokine expression, thereby initiating interactions between tumor cells, the pulmonary vasculature, and myeloid cells. Our results support a model where NRAS‐mutant, chemokine‐expressing circulating tumor cells target the CXCR1‐expressing lung vasculature and recruit CXCR2‐expressing myeloid cells to initiate metastasis. We further describe a clinically relevant approach to prevent NRAS‐driven pulmonary metastasis by inhibiting chemokine signaling. In conclusion, NRAS promotes the colonization of the lungs by various tumor types in mouse models. IL‐8‐related chemokines, NRAS signaling partners in this process, may constitute an important therapeutic target against pulmonary involvement by cancers of other organs.


OncoImmunology | 2017

Tumor-derived osteopontin isoforms cooperate with TRP53 and CCL2 to promote lung metastasis

Ioanna Giopanou; Ioannis Lilis; Vassilios Papaleonidopoulos; Theodora Agalioti; Nikolaos Kanellakis; Nikolitsa Spiropoulou; Magda Spella; Georgios T. Stathopoulos

ABSTRACT The lungs are ubiquitous receptacles of metastases originating from various bodily tumors. Although osteopontin (SPP1) has been associated with tumor dissemination, the role of its isoforms in lung-directed metastasis is incompletely understood. We employed syngeneic mouse models of spontaneous and induced lung-targeted metastasis in C57BL/6 mice competent and deficient in both Spp1 alleles. Tumor-derived osteopontin expression was modulated using either stable anti-Spp1 RNA interference, or forced overexpression of intracellular and secreted Spp1 isoforms. Identified osteopontins downstream partners were validated using lung adenocarcinoma cells conditionally lacking the Trp53 gene and Ccr2-deficient mice. We determined that host-derived osteopontin was dispensable for pulmonary colonization by different tumor types. Oppositely, tumor-originated intracellular osteopontin promoted tumor cell survival by preventing tumor-related protein 53-mediated apoptosis, while the secretory osteopontin functioned in a paracrine mode to accelerate lung metastasis by enhancing tumor-derived C–C-motif chemokine ligand 2 signaling to cognate host receptors. As new ways to target osteopontin signaling are becoming available, the cytokine may constitute an important therapeutic target against pulmonary involvement by cancers of other organs.


Chest | 2018

A Pilot Feasibility Study in Establishing the Role of Ultrasound-Guided Pleural Biopsies in Pleural Infection (The AUDIO Study)

Ioannis Psallidas; Nikolaos Kanellakis; Rahul Bhatnagar; Rahul Ravindran; Ahmed Yousuf; Anthony Edey; Rachel M. Mercer; John P. Corcoran; Rj Hallifax; Rachelle Asciak; Prashanth Shetty; Tao Dong; Hania E G Piotrowska; Colin Clelland; Nick A Maskell; Najib M. Rahman

Background Pleural infection is a common complication of pneumonia associated with high mortality and poor clinical outcome. Treatment of pleural infection relies on the use of broad‐spectrum antibiotics because reliable pathogen identification occurs infrequently. We performed a feasibility interventional clinical study assessing the safety and significance of ultrasound (US)‐guided pleural biopsy culture to increase microbiological yield. In an exploratory investigation, the 16S ribosomal RNA technique was applied to assess its utility on increasing speed and accuracy vs standard microbiological diagnosis. Methods Twenty patients with clinically established pleural infection were recruited. Participants underwent a detailed US scan and US‐guided pleural biopsies before chest drain insertion, alongside standard clinical management. Pleural biopsies and routine clinical samples (pleural fluid and blood) were submitted for microbiological analysis. Results US‐guided pleural biopsies were safe with no adverse events. US‐guided pleural biopsies increased microbiological yield by 25% in addition to pleural fluid and blood samples. The technique provided a substantially higher microbiological yield compared with pleural fluid and blood culture samples (45% compared with 20% and 10%, respectively). The 16S ribosomal RNA technique was successfully applied to pleural biopsy samples, demonstrating high sensitivity (93%) and specificity (89.5%). Conclusions Our findings demonstrate the safety of US‐guided pleural biopsies in patients with pleural infection and a substantial increase in microbiological diagnosis, suggesting potential niche of infection in this disease. Quantitative polymerase chain reaction primer assessment of pleural fluid and biopsy appears to have excellent sensitivity and specificity.


Cancer Research | 2018

ΙκΒ kinase α is required for development and progression of KRAS-mutant lung adenocarcinoma.

Malamati Vreka; Ioannis Lilis; Maria Papageorgopoulou; Georgia Giotopoulou; Marina Lianou; Ioanna Giopanou; Nikolaos Kanellakis; Magda Spella; Theodora Agalioti; Vasileios Armenis; Torsten Goldmann; Sebastian Marwitz; Fiona E. Yull; Timothy S. Blackwell; Manolis Pasparakis; Antonia Marazioti; Georgios T. Stathopoulos

Although oncogenic activation of NFκB has been identified in various tumors, the NFκB-activating kinases (inhibitor of NFκB kinases, IKK) responsible for this are elusive. In this study, we determined the role of IKKα and IKKβ in KRAS-mutant lung adenocarcinomas induced by the carcinogen urethane and by respiratory epithelial expression of oncogenic KRASG12D Using NFκB reporter mice and conditional deletions of IKKα and IKKβ, we identified two distinct early and late activation phases of NFκB during chemical and genetic lung adenocarcinoma development, which were characterized by nuclear translocation of RelB, IκBβ, and IKKα in tumor-initiated cells. IKKα was a cardinal tumor promoter in chemical and genetic KRAS-mutant lung adenocarcinoma, and respiratory epithelial IKKα-deficient mice were markedly protected from the disease. IKKα specifically cooperated with mutant KRAS for tumor induction in a cell-autonomous fashion, providing mutant cells with a survival advantage in vitro and in vivo IKKα was highly expressed in human lung adenocarcinoma, and a heat shock protein 90 inhibitor that blocks IKK function delivered superior effects against KRAS-mutant lung adenocarcinoma compared with a specific IKKβ inhibitor. These results demonstrate an actionable requirement for IKKα in KRAS-mutant lung adenocarcinoma, marking the kinase as a therapeutic target against this disease.Significance: These findings report a novel requirement for IKKα in mutant KRAS lung tumor formation, with potential therapeutic applications. Cancer Res; 78(11); 2939-51. ©2018 AACR.


Data in Brief | 2016

Whole transcriptome data analysis of mouse embryonic hematopoietic stem and progenitor cells that lack Geminin expression

Alexandra L. Patmanidi; Nikolaos Kanellakis; Dimitris Karamitros; Christos Papadimitriou; Zoi Lygerou; Stavros Taraviras

We performed cDNA microarrays (Affymetrix Mouse Gene 1.0 ST Chip) to analyze the transcriptome of hematopoietic stem and progenitor cells (HSPCs) from E15.5dpc wild type and Geminin (Gmnn) knockout embryos. Lineage negative cells from embryonic livers were isolated using fluorescence activated cell sorting. RNA samples were used to examine the transcriptional programs regulated by Geminin during embryonic hematopoiesis. The data sets were analyzed using the GeneSpring v12.5 platform (Agilent). The list of differentially expressed genes was filtered in meta-analyses to investigate the molecular basis of the phenotype observed in the knockout embryos, which exhibited defective hematopoiesis and death. The data from this study are related to the research article “Geminin deletion increases the number of fetal hematopoietic stem cells by affecting the expression of key transcription factors” (Karamitros et al., 2015) [1]. The microarray dataset has been deposited at the Gene Expression Omnibus (GEO) under accession GEO: GSE53056.

Collaboration


Dive into the Nikolaos Kanellakis's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge