Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nikolaos Svoronos is active.

Publication


Featured researches published by Nikolaos Svoronos.


Cancer Cell | 2015

Microbially Driven TLR5-Dependent Signaling Governs Distal Malignant Progression through Tumor-Promoting Inflammation

Melanie R. Rutkowski; Tom L. Stephen; Nikolaos Svoronos; Michael J. Allegrezza; Amelia J. Tesone; Alfredo Perales-Puchalt; Eva Brencicova; Ximena Escovar-Fadul; Jenny M. Nguyen; Mark G. Cadungog; Rugang Zhang; Mariana Salatino; Julia Tchou; Gabriel A. Rabinovich; Jose R. Conejo-Garcia

The dominant TLR5(R392X) polymorphism abrogates flagellin responses in >7% of humans. We report that TLR5-dependent commensal bacteria drive malignant progression at extramucosal locations by increasing systemic IL-6, which drives mobilization of myeloid-derived suppressor cells (MDSCs). Mechanistically, expanded granulocytic MDSCs cause γδ lymphocytes in TLR5-responsive tumors to secrete galectin-1, dampening antitumor immunity and accelerating malignant progression. In contrast, IL-17 is consistently upregulated in TLR5-unresponsive tumor-bearing mice but only accelerates malignant progression in IL-6-unresponsive tumors. Importantly, depletion of commensal bacteria abrogates TLR5-dependent differences in tumor growth. Contrasting differences in inflammatory cytokines and malignant evolution are recapitulated in TLR5-responsive/unresponsive ovarian and breast cancer patients. Therefore, inflammation, antitumor immunity, and the clinical outcome of cancer patients are influenced by a common TLR5 polymorphism.


Clinical Cancer Research | 2013

A Dendritic Cell Vaccine Pulsed with Autologous Hypochlorous Acid-Oxidized Ovarian Cancer Lysate Primes Effective Broad Antitumor Immunity: From Bench to Bedside

Cheryl Lai-Lai Chiang; Lana E. Kandalaft; Janos L. Tanyi; Andrea R. Hagemann; Gregory T. Motz; Nikolaos Svoronos; Kathleen T. Montone; Gina Mantia-Smaldone; Lori Smith; Harvey L. Nisenbaum; Bruce L. Levine; Michael Kalos; Brian J. Czerniecki; Drew A. Torigian; Daniel J. Powell; Rosemarie Mick; George Coukos

Purpose: Whole tumor lysates are promising antigen sources for dendritic cell (DC) therapy as they contain many relevant immunogenic epitopes to help prevent tumor escape. Two common methods of tumor lysate preparations are freeze-thaw processing and UVB irradiation to induce necrosis and apoptosis, respectively. Hypochlorous acid (HOCl) oxidation is a new method for inducing primary necrosis and enhancing the immunogenicity of tumor cells. Experimental Design: We compared the ability of DCs to engulf three different tumor lysate preparations, produce T-helper 1 (TH1)-priming cytokines and chemokines, stimulate mixed leukocyte reactions (MLR), and finally elicit T-cell responses capable of controlling tumor growth in vivo. Results: We showed that DCs engulfed HOCl-oxidized lysate most efficiently stimulated robust MLRs, and elicited strong tumor-specific IFN-γ secretions in autologous T cells. These DCs produced the highest levels of TH1-priming cytokines and chemokines, including interleukin (IL)-12. Mice vaccinated with HOCl-oxidized ID8-ova lysate–pulsed DCs developed T-cell responses that effectively controlled tumor growth. Safety, immunogenicity of autologous DCs pulsed with HOCl-oxidized autologous tumor lysate (OCDC vaccine), clinical efficacy, and progression-free survival (PFS) were evaluated in a pilot study of five subjects with recurrent ovarian cancer. OCDC vaccination produced few grade 1 toxicities and elicited potent T-cell responses against known ovarian tumor antigens. Circulating regulatory T cells and serum IL-10 were also reduced. Two subjects experienced durable PFS of 24 months or more after OCDC. Conclusions: This is the first study showing the potential efficacy of a DC vaccine pulsed with HOCl-oxidized tumor lysate, a novel approach in preparing DC vaccine that is potentially applicable to many cancers. Clin Cancer Res; 19(17); 4801–15. ©2013 AACR.


Immunity | 2014

Transforming Growth Factor β-Mediated Suppression of Antitumor T Cells Requires FoxP1 Transcription Factor Expression

Tom L. Stephen; Melanie R. Rutkowski; Michael J. Allegrezza; Alfredo Perales-Puchalt; Amelia J. Tesone; Nikolaos Svoronos; Jenny M. Nguyen; Fahmida Sarmin; Mark E. Borowsky; Julia Tchou; Jose R. Conejo-Garcia

Tumor-reactive T cells become unresponsive in advanced tumors. Here we have characterized a common mechanism of T cell unresponsiveness in cancer driven by the upregulation of the transcription factor Forkhead box protein P1 (Foxp1), which prevents CD8⁺ T cells from proliferating and upregulating Granzyme-B and interferon-γ in response to tumor antigens. Accordingly, Foxp1-deficient lymphocytes induced rejection of incurable tumors and promoted protection against tumor rechallenge. Mechanistically, Foxp1 interacted with the transcription factors Smad2 and Smad3 in preactivated CD8⁺ T cells in response to microenvironmental transforming growth factor-β (TGF-β), and was essential for its suppressive activity. Therefore, Smad2 and Smad3-mediated c-Myc repression requires Foxp1 expression in T cells. Furthermore, Foxp1 directly mediated TGF-β-induced c-Jun transcriptional repression, which abrogated T cell activity. Our results unveil a fundamental mechanism of T cell unresponsiveness different from anergy or exhaustion, driven by TGF-β signaling on tumor-associated lymphocytes undergoing Foxp1-dependent transcriptional regulation.


Cancer Discovery | 2017

Tumor Cell–Independent Estrogen Signaling Drives Disease Progression through Mobilization of Myeloid-Derived Suppressor Cells

Nikolaos Svoronos; Alfredo Perales-Puchalt; Michael J. Allegrezza; Melanie R. Rutkowski; Kyle K. Payne; Amelia J. Tesone; Jenny M. Nguyen; Tyler J. Curiel; Mark G. Cadungog; Sunil Singhal; Evgeniy Eruslanov; Paul J. Zhang; Julia Tchou; Rugang Zhang; Jose R. Conejo-Garcia

The role of estrogens in antitumor immunity remains poorly understood. Here, we show that estrogen signaling accelerates the progression of different estrogen-insensitive tumor models by contributing to deregulated myelopoiesis by both driving the mobilization of myeloid-derived suppressor cells (MDSC) and enhancing their intrinsic immunosuppressive activity in vivo Differences in tumor growth are dependent on blunted antitumor immunity and, correspondingly, disappear in immunodeficient hosts and upon MDSC depletion. Mechanistically, estrogen receptor alpha activates the STAT3 pathway in human and mouse bone marrow myeloid precursors by enhancing JAK2 and SRC activity. Therefore, estrogen signaling is a crucial mechanism underlying pathologic myelopoiesis in cancer. Our work suggests that new antiestrogen drugs that have no agonistic effects may have benefits in a wide range of cancers, independently of the expression of estrogen receptors in tumor cells, and may synergize with immunotherapies to significantly extend survival. SIGNIFICANCE Ablating estrogenic activity delays malignant progression independently of the tumor cell responsiveness, owing to a decrease in the mobilization and immunosuppressive activity of MDSCs, which boosts T-cell-dependent antitumor immunity. Our results provide a mechanistic rationale to block estrogen signaling with newer antagonists to boost the effectiveness of anticancer immunotherapies. Cancer Discov; 7(1); 72-85. ©2016 AACR.See related commentary by Welte et al., p. 17This article is highlighted in the In This Issue feature, p. 1.


Archive | 2015

The Tumor Macroenvironment

Melanie R. Rutkowski; Nikolaos Svoronos; Alfredo Perales-Puchalt; Jose R. Conejo-Garcia

During tumor progression, alterations within the systemic tumor environment, or macroenvironment, result in the promotion of tumor growth, tumor invasion to distal organs, and eventual metastatic disease. Distally produced hormones, commensal microbiota residing within mucosal surfaces, myeloid cells and even the bone marrow impact the systemic immune system, tumor growth, and metastatic spread. Understanding the reciprocal interactions between the cells and soluble factors within the macroenvironment and the primary tumor will enable the design of specific therapies that have the potential to prevent dissemination and metastatic spread. This chapter will summarize recent findings detailing how the primary tumor and systemic tumor macroenvironment coordinate malignant progression.


Advances in Cancer Research | 2015

THE TUMOR MACROENVIRONMENT: CANCER-PROMOTING NETWORKS BEYOND TUMOR BEDS

Melanie R. Rutkowski; Nikolaos Svoronos; Alfredo Perales-Puchalt; Conejo-Garcia

During tumor progression, alterations within the systemic tumor environment, or macroenvironment, result in the promotion of tumor growth, tumor invasion to distal organs, and eventual metastatic disease. Distally produced hormones, commensal microbiota residing within mucosal surfaces, myeloid cells and even the bone marrow impact the systemic immune system, tumor growth, and metastatic spread. Understanding the reciprocal interactions between the cells and soluble factors within the macroenvironment and the primary tumor will enable the design of specific therapies that have the potential to prevent dissemination and metastatic spread. This chapter will summarize recent findings detailing how the primary tumor and systemic tumor macroenvironment coordinate malignant progression.


Cancer Research | 2016

IL15 Agonists Overcome the Immunosuppressive Effects of MEK Inhibitors

Michael J. Allegrezza; Melanie R. Rutkowski; Tom L. Stephen; Nikolaos Svoronos; Amelia J. Tesone; Alfredo Perales-Puchalt; Jenny M. Nguyen; Fahmida Sarmin; Mee Rie Sheen; Emily K. Jeng; Julia Tchou; Hing C. Wong; Steven Fiering; Jose R. Conejo-Garcia

Many signal transduction inhibitors are being developed for cancer therapy target pathways that are also important for the proper function of antitumor lymphocytes, possibly weakening their therapeutic effects. Here we show that most inhibitors targeting multiple signaling pathways have especially strong negative effects on T-cell activation at their active doses on cancer cells. In particular, we found that recently approved MEK inhibitors displayed potent suppressive effects on T cells in vitro However, these effects could be attenuated by certain cytokines that can be administered to cancer patients. Among them, clinically available IL15 superagonists, which can activate PI3K selectively in T lymphocytes, synergized with MEK inhibitors in vivo to elicit potent and durable antitumor responses, including by a vaccine-like effect that generated resistance to tumor rechallenge. Our work identifies a clinically actionable approach to overcome the T-cell-suppressive effects of MEK inhibitors and illustrates how to reconcile the deficiencies of signal transduction inhibitors, which impede desired immunologic effects in vivo Cancer Res; 76(9); 2561-72. ©2016 AACR.


Clinical Cancer Research | 2017

Follicle-stimulating hormone receptor is expressed by most ovarian cancer subtypes and is a safe and effective immunotherapeutic target

Alfredo Perales-Puchalt; Nikolaos Svoronos; Melanie R. Rutkowski; Michael J. Allegrezza; Amelia J. Tesone; Kyle K. Payne; Jayamanna Wickramasinghe; Jenny M. Nguyen; Shane W. O'Brien; Kiranmai Gumireddy; Qihong Huang; Mark G. Cadungog; Denise C. Connolly; Julia Tchou; Tyler J. Curiel; Jose R. Conejo-Garcia

Purpose: To define the safety and effectiveness of T cells redirected against follicle-stimulating hormone receptor (FSHR)-expressing ovarian cancer cells. Experimental Design: FSHR expression was determined by Western blotting, immunohistochemistry, and qPCR in 77 human ovarian cancer specimens from 6 different histologic subtypes and 20 human healthy tissues. The effectiveness of human T cells targeted with full-length FSH in vivo was determined against a panel of patient-derived xenografts. Safety and effectiveness were confirmed in immunocompetent tumor-bearing mice, using constructs targeting murine FSHR and syngeneic T cells. Results: FSHR is expressed in gynecologic malignancies of different histologic types but not in nonovarian healthy tissues. Accordingly, T cells expressing full-length FSHR-redirected chimeric receptors mediate significant therapeutic effects (including tumor rejection) against a panel of patient-derived tumors in vivo. In immunocompetent mice growing syngeneic, orthotopic, and aggressive ovarian tumors, fully murine FSHR-targeted T cells also increased survival without any measurable toxicity. Notably, chimeric receptors enhanced the ability of endogenous tumor-reactive T cells to abrogate malignant progression upon adoptive transfer into naïve recipients subsequently challenged with the same tumor. Interestingly, FSHR-targeted T cells persisted as memory lymphocytes without noticeable PD-1–dependent exhaustion during end-stage disease, in the absence of tumor cell immunoediting. However, exosomes in advanced tumor ascites diverted the effector activity of this and other chimeric receptor–transduced T cells away from targeted tumor cells. Conclusions: T cells redirected against FSHR+ tumor cells with full-length FSH represent a promising therapeutic alternative against a broad range of ovarian malignancies, with negligible toxicity even in the presence of cognate targets in tumor-free ovaries. Clin Cancer Res; 23(2); 441–53. ©2016 AACR.


Frontiers in Immunology | 2013

Pathological Mobilization and Activities of Dendritic Cells in Tumor-Bearing Hosts: Challenges and Opportunities for Immunotherapy of Cancer

Amelia J. Tesone; Nikolaos Svoronos; Michael J. Allegrezza; Jose R. Conejo-Garcia

A common characteristic of solid tumors is the pathological recruitment of immunosuppressive myeloid cells, which in certain tumors includes dendritic cells (DCs). DCs are of particular interest in the field of cancer immunotherapy because they induce potent and highly specific anti-tumor immune responses, particularly in the early phase of tumorigenesis. However, as tumors progress, these cells can be transformed into regulatory cells that contribute to an immunosuppressive microenvironment favoring tumor growth. Therefore, controlling DC phenotype has the potential to elicit effective anti-tumor responses while simultaneously weakening the tumor’s ability to protect itself from immune attack. This review focuses on the dual nature of DCs in the tumor microenvironment, the regulation of DC phenotype, and the prospect of modifying DCs in situ as a novel immunotherapeutic approach.


Vaccine | 2015

Molecular adjuvant IL-33 enhances the potency of a DNA vaccine in a lethal challenge model.

Daniel O. Villarreal; Nikolaos Svoronos; Megan C. Wise; Devon J. Shedlock; Matthew P. Morrow; Jose R. Conejo-Garcia; David B. Weiner

Identifying new molecular adjuvants that elicit effective vaccine-induced CD8(+) T cell immunity may be critical for the elimination of many challenging diseases including Tuberculosis, HIV and cancer. Here, we report that co-administration of molecular adjuvant IL-33 during vaccination enhanced the magnitude and function of antigen (Ag)-specific CD8(+) T cells against a model Ag, LCMV NP target protein. These enhanced responses were characterized by higher frequencies of Ag-specific, polyfunctional CD8(+) T cells exhibiting cytotoxic characteristics. Importantly, these cells were capable of robust expansion upon Ag-specific restimulation in vivo and conferred remarkable protection against a high dose lethal LCMV challenge. In addition, we demonstrate the ability of IL-33 to amplifying the frequency of Ag-specific KLRG1(+) effector CD8(+) T cells. These data show that IL-33 is a promising immunoadjuvant at improving T cell immunity in a vaccine setting and suggest further development and understanding of this molecular adjuvant for strategies against many obstinate infectious diseases and cancer.

Collaboration


Dive into the Nikolaos Svoronos's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Julia Tchou

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kyle K. Payne

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge