Tom L. Stephen
Wistar Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tom L. Stephen.
Journal of Clinical Investigation | 2014
Evgeniy Eruslanov; Pratik Bhojnagarwala; Jon G. Quatromoni; Tom L. Stephen; Anjana Ranganathan; Charuhas Deshpande; Tatiana Akimova; Anil Vachani; Leslie A. Litzky; Wayne W. Hancock; Jose R. Conejo-Garcia; Michael Feldman; Steven M. Albelda; Sunil Singhal
Infiltrating inflammatory cells are highly prevalent within the tumor microenvironment and mediate many processes associated with tumor progression; however, the contribution of specific populations remains unclear. For example, the nature and function of tumor-associated neutrophils (TANs) in the cancer microenvironment is largely unknown. The goal of this study was to provide a phenotypic and functional characterization of TANs in surgically resected lung cancer patients. We found that TANs constituted 5%-25% of cells isolated from the digested human lung tumors. Compared with blood neutrophils, TANs displayed an activated phenotype (CD62L(lo)CD54(hi)) with a distinct repertoire of chemokine receptors that included CCR5, CCR7, CXCR3, and CXCR4. TANs produced substantial quantities of the proinflammatory factors MCP-1, IL-8, MIP-1α, and IL-6, as well as the antiinflammatory IL-1R antagonist. Functionally, both TANs and neutrophils isolated from distant nonmalignant lung tissue were able to stimulate T cell proliferation and IFN-γ release. Cross-talk between TANs and activated T cells led to substantial upregulation of CD54, CD86, OX40L, and 4-1BBL costimulatory molecules on the neutrophil surface, which bolstered T cell proliferation in a positive-feedback loop. Together our results demonstrate that in the earliest stages of lung cancer, TANs are not immunosuppressive, but rather stimulate T cell responses.
Cancer Cell | 2015
Melanie R. Rutkowski; Tom L. Stephen; Nikolaos Svoronos; Michael J. Allegrezza; Amelia J. Tesone; Alfredo Perales-Puchalt; Eva Brencicova; Ximena Escovar-Fadul; Jenny M. Nguyen; Mark G. Cadungog; Rugang Zhang; Mariana Salatino; Julia Tchou; Gabriel A. Rabinovich; Jose R. Conejo-Garcia
The dominant TLR5(R392X) polymorphism abrogates flagellin responses in >7% of humans. We report that TLR5-dependent commensal bacteria drive malignant progression at extramucosal locations by increasing systemic IL-6, which drives mobilization of myeloid-derived suppressor cells (MDSCs). Mechanistically, expanded granulocytic MDSCs cause γδ lymphocytes in TLR5-responsive tumors to secrete galectin-1, dampening antitumor immunity and accelerating malignant progression. In contrast, IL-17 is consistently upregulated in TLR5-unresponsive tumor-bearing mice but only accelerates malignant progression in IL-6-unresponsive tumors. Importantly, depletion of commensal bacteria abrogates TLR5-dependent differences in tumor growth. Contrasting differences in inflammatory cytokines and malignant evolution are recapitulated in TLR5-responsive/unresponsive ovarian and breast cancer patients. Therefore, inflammation, antitumor immunity, and the clinical outcome of cancer patients are influenced by a common TLR5 polymorphism.
Immunity | 2014
Tom L. Stephen; Melanie R. Rutkowski; Michael J. Allegrezza; Alfredo Perales-Puchalt; Amelia J. Tesone; Nikolaos Svoronos; Jenny M. Nguyen; Fahmida Sarmin; Mark E. Borowsky; Julia Tchou; Jose R. Conejo-Garcia
Tumor-reactive T cells become unresponsive in advanced tumors. Here we have characterized a common mechanism of T cell unresponsiveness in cancer driven by the upregulation of the transcription factor Forkhead box protein P1 (Foxp1), which prevents CD8⁺ T cells from proliferating and upregulating Granzyme-B and interferon-γ in response to tumor antigens. Accordingly, Foxp1-deficient lymphocytes induced rejection of incurable tumors and promoted protection against tumor rechallenge. Mechanistically, Foxp1 interacted with the transcription factors Smad2 and Smad3 in preactivated CD8⁺ T cells in response to microenvironmental transforming growth factor-β (TGF-β), and was essential for its suppressive activity. Therefore, Smad2 and Smad3-mediated c-Myc repression requires Foxp1 expression in T cells. Furthermore, Foxp1 directly mediated TGF-β-induced c-Jun transcriptional repression, which abrogated T cell activity. Our results unveil a fundamental mechanism of T cell unresponsiveness different from anergy or exhaustion, driven by TGF-β signaling on tumor-associated lymphocytes undergoing Foxp1-dependent transcriptional regulation.
Human Pathology | 2013
Julia Tchou; Paul J. Zhang; Yingtao Bi; Celine Satija; Rajrupa Marjumdar; Tom L. Stephen; Albert C. Lo; Haiying Chen; Carolyn Mies; Carl H. June; Jose R. Conejo-Garcia; Ellen Puré
Fibroblast activation protein (FAP) has long been known to be expressed in the stroma of breast cancer. However, very little is known if the magnitude of FAP expression within the stroma may have a prognostic value and reflect the heterogeneous biology of the tumor cell. An earlier study had suggested that stromal FAP expression in breast cancer was inversely proportional to prognosis. We, therefore, hypothesized that stromal FAP expression may correlate with clinicopathologic variables and may serve as an adjunct prognostic factor in breast cancer. We evaluated the expression of FAP in a panel of breast cancer tissues (n = 52) using a combination of immunostain analyses at the tissue and single-cell level using freshly frozen or freshly digested human breast tumor samples, respectively. Our results showed that FAP expression was abundantly expressed in the stroma across all breast cancer subtypes without significant correlation with clinicopathologic factors. We further identified a subset of FAP-positive (or FAP(+)) stromal cells that also expressed CD45, a pan-leukocyte marker. Using freshly dissociated human breast tumor specimens (n = 5), we demonstrated that some of these FAP(+)CD45(+) cells were CD11b(+)CD14(+)MHC-II(+), indicating that they were likely tumor-associated macrophages (TAMs). Although FAP(+)CD45(+) cells have been demonstrated in the mouse tumor stroma, our results demonstrating that human breast TAMs expressed FAP were novel and suggested that existing and future FAP-directed therapy may have dual-therapeutic benefits targeting both stromal mesenchymal cells and immune cells such as TAMs. More work is needed to explore the role of FAP as a potential targetable molecule in breast cancer treatment.
Journal of Autoimmunity | 2011
Gregory F. Wu; Kenneth S. Shindler; Eric J. Allenspach; Tom L. Stephen; Hannah L. Thomas; Robert Mikesell; Anne H. Cross; Terri M. Laufer
Experimental autoimmune encephalomyelitis (EAE), a model for the human disease multiple sclerosis (MS), is dependent upon the activation and effector functions of autoreactive CD4 T cells. Multiple interactions between CD4 T cells and major histocompatibility class II (MHCII)+ antigen presenting cells (APCs) must occur in both the periphery and central nervous system (CNS) to elicit autoimmunity. The identity of the MHCII+ APCs involved throughout this process remains in question. We investigated which APC in the periphery and CNS mediates disease using transgenic mice with MHCII expression restricted to dendritic cells (DCs). MHCII expression restricted to DCs results in normal susceptibility to peptide-mediated EAE. Indeed, radiation-sensitive bone marrow-derived DCs were sufficient for all APC functions during peptide-induced disease. However, DCs alone were inefficient at promoting disease after immunization with the myelin protein myelin oligodendrocyte glycoprotein (MOG), even in the presence of MHCII-deficient B cells. Consistent with a defect in disease induction following protein immunization, antigen presentation by DCs alone was incapable of mediating spontaneous optic neuritis. These results indicate that DCs are capable of perpetuating CNS-targeted autoimmunity when antigens are readily available, but other APCs are required to efficiently initiate pathogenic cognate CD4 T cell responses.
Immunity | 2017
Tom L. Stephen; Kyle K. Payne; Ricardo A. Chaurio; Michael J. Allegrezza; Hengrui Zhu; Jairo Perez‐Sanz; Alfredo Perales-Puchalt; Jenny M. Nguyen; Ana Vara-Ailor; Evgeniy Eruslanov; Mark E. Borowsky; Rugang Zhang; Terri M. Laufer; Jose R. Conejo-Garcia
&NA; Despite the importance of programmed cell death‐1 (PD‐1) in inhibiting T cell effector activity, the mechanisms regulating its expression remain poorly defined. We found that the chromatin organizer special AT‐rich sequence‐binding protein‐1 (Satb1) restrains PD‐1 expression induced upon T cell activation by recruiting a nucleosome remodeling deacetylase (NuRD) complex to Pdcd1 regulatory regions. Satb1 deficienct T cells exhibited a 40‐fold increase in PD‐1 expression. Tumor‐derived transforming growth factor &bgr; (Tgf‐&bgr;) decreased Satb1 expression through binding of Smad proteins to the Satb1 promoter. Smad proteins also competed with the Satb1‐NuRD complex for binding to Pdcd1 enhancers, releasing Pdcd1 expression from Satb1‐mediated repression, Satb1‐deficient tumor‐reactive T cells lost effector activity more rapidly than wild‐type lymphocytes at tumor beds expressing PD‐1 ligand (CD274), and these differences were abrogated by sustained CD274 blockade. Our findings suggest that Satb1 functions to prevent premature T cell exhaustion by regulating Pdcd1 expression upon T cell activation. Dysregulation of this pathway in tumor‐infiltrating T cells results in diminished anti‐tumor immunity. Graphical Abstract Figure. No caption available. HighlightsT cell activation increased the expression of Satb1 in mature CD8+ and CD4+ T cellsRecruitment of the NuRD repression complex by Satb1 inhibits expression of Pdcd1In tumors, TGF‐&bgr; inhibits Satb1 expression in T cells, increasing Pdcd1 expressionSatb1−/− T cells express high amounts of PD‐1 and have decreased anti‐tumor activity &NA; Stephen et al. show that the chromatin organizer Satb1 controls expression levels of PD‐1 upon T cell activation through the recruitment of a de‐acetylase complex to regulatory regions of the Pdcd1 gene. Tumor‐derived TGF‐&bgr; dysregulates this pathway, unleashing PD‐1 expression in tumor‐infiltrating T cells and decreasing anti‐tumor immunity.
Journal of Immunology | 2009
Tom L. Stephen; Anastasia Tikhonova; Janice M. Riberdy; Terri M. Laufer
Immature thymocytes that are positively selected based upon their response to self-peptide-MHC complexes develop into mature T cells that are not overtly reactive to those same complexes. Developmental tuning is the active process through which TCR-associated signaling pathways of single-positive thymocytes are attenuated to respond appropriately to the peptide-MHC molecules that will be encountered in the periphery. In this study, we explore the mechanisms that regulate the tuning of CD4+ single-positive T cells to MHC class II encountered in the thymic medulla. Experiments with murine BM chimeras demonstrate that tuning can be mediated by MHC class II expressed by either thymic medullary epithelial cells or thymic dendritic cells. Tuning does not require the engagement of CD4 by MHC class II on stromal cells. Rather, it is mediated by interactions between MHC class II and the TCR. To understand the molecular changes that distinguish immature hyperactive T cells from tuned mature CD4+ T cells, we compared their responses to TCR stimulation. The altered response of mature CD4 single-positive thymocytes is characterized by the inhibition of ERK activation by low-affinity self-ligands and increased expression of the inhibitory tyrosine phosphatase SHP-1. Thus, persistent TCR engagement by peptide-MHC class II on thymic medullary stroma inhibits reactivity to self-Ags and prevents autoreactivity in the mature repertoire.
Cellular Immunology | 2012
Melanie R. Rutkowski; Tom L. Stephen; Jose R. Conejo-Garcia
The immune surveillance hypothesis proposed over 50 years ago that many precancerous lesions are eliminated without a histological trace due to immunological pressure. Since then, it has become apparent that both the tumor and the anti-cancer immune response evolve over a long period to allow the eventual escape of nascent precancerous lesions into full-blown tumors. Although primarily focusing on loss of antigenicity, the immunoediting hypothesis has gradually evolved to appreciate the role of active immunosuppression in tumor progression, where myeloid leukocytes are increasingly recognized as the major driving force. This review highlights recent studies implicating how myeloid cells with antigen-presenting capabilities are co-opted by tumors to promote malignant progression. Because at least some advanced tumors remain significantly immunogenic, these new studies add a tweak to the immunoediting hypothesis as well as a rationale to block immunosuppressive mechanisms as a first-line intervention in cancer patients.
Cancer Research | 2016
Michael J. Allegrezza; Melanie R. Rutkowski; Tom L. Stephen; Nikolaos Svoronos; Amelia J. Tesone; Alfredo Perales-Puchalt; Jenny M. Nguyen; Fahmida Sarmin; Mee Rie Sheen; Emily K. Jeng; Julia Tchou; Hing C. Wong; Steven Fiering; Jose R. Conejo-Garcia
Many signal transduction inhibitors are being developed for cancer therapy target pathways that are also important for the proper function of antitumor lymphocytes, possibly weakening their therapeutic effects. Here we show that most inhibitors targeting multiple signaling pathways have especially strong negative effects on T-cell activation at their active doses on cancer cells. In particular, we found that recently approved MEK inhibitors displayed potent suppressive effects on T cells in vitro However, these effects could be attenuated by certain cytokines that can be administered to cancer patients. Among them, clinically available IL15 superagonists, which can activate PI3K selectively in T lymphocytes, synergized with MEK inhibitors in vivo to elicit potent and durable antitumor responses, including by a vaccine-like effect that generated resistance to tumor rechallenge. Our work identifies a clinically actionable approach to overcome the T-cell-suppressive effects of MEK inhibitors and illustrates how to reconcile the deficiencies of signal transduction inhibitors, which impede desired immunologic effects in vivo Cancer Res; 76(9); 2561-72. ©2016 AACR.
International Journal of Microbiology | 2010
Tom L. Stephen; Laura Groneck; Wiltrud M. Kalka-Moll
The detection of pathogen-derived molecules as foreign particles by adaptive immune cells triggers T and B lymphocytes to mount protective cellular and humoral responses, respectively. Recent immunological advances elucidated that proteins and some lipids are the principle biological molecules that induce protective T cell responses during microbial infections. Polysaccharides are important components of microbial pathogens and many vaccines. However, research concerning the activation of the adaptive immune system by polysaccharides gained interest only recently. Traditionally, polysaccharides were considered to be T cell-independent antigens that did not directly activate T cells or induce protective immune responses. Here, we review several recent advances in “carbohydrate immunobiology”. A group of bacterial polysaccharides that are known as “zwitterionic polysaccharides (ZPSs)” were recently identified as potent immune modulators. The immunomodulatory effect of ZPSs required antigen processing and presentation by antigen presenting cells, the activation of CD4 T cells and subpopulations of CD8 T cells and the modulation of host cytokine responses. In this review, we also discuss the potential use of these unique immunomodulatory ZPSs in new vaccination strategies against chronic inflammatory conditions, autoimmunity, infectious diseases, allergies and asthmatic conditions.