Nikolay A. Semenov
Russian Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nikolay A. Semenov.
Journal of Physical Chemistry A | 2011
Elizaveta A. Suturina; Nikolay A. Semenov; Anton V. Lonchakov; Irina Yu. Bagryanskaya; Yuri V. Gatilov; Irina G. Irtegova; Nadezhda V. Vasilieva; Enno Lork; Riidiger Mews; Nina P. Gritsan; Andrey V. Zibarev
According to the DFT calculations, [1,2,5]thiadiazolo[3,4-c][1,2,5]thiadiazole (4), [1,2,5]selenadiazolo[3,4-c][1,2,5]thiadiazole (5), 3,4-dicyano-1,2,5-thiadiazole (6), and 3,4-dicyano-1,2,5-selenadiazole (7) have nearly the same positive electron affinity (EA). Under the CV conditions they readily produce long-lived π-delocalized radical anions (π-RAs) characterized by EPR. Whereas 4 and 5 were chemically reduced into the π-RAs with thiophenolate (PhS(-)), 6 did not react and 7 formed a product of hypercoordination at the Se center (9) isolated in the form of the thermally stable salt [K(18-crown-6)][9] (10). The latter type of reactivity has never been observed previously for any 1,2,5-chalcogenadiazole derivatives. The X-ray structure of salt 10 revealed that the Se-S distance in the anion 9 (2.722 Å) is ca. 0.5 Å longer than the sum of the covalent radii of these atoms but ca. 1 Å shorter than the sum of their van der Waals radii. According to the QTAIM and NBO analysis, the Se-S bond in 9 can be considered a donor-acceptor bond whose formation leads to transfer of ca. 40% of negative charge from PhS(-) onto the heterocycle. For various PhS(-)/1,2,5-chalcogenadiazole reaction systems, thermodynamics and kinetics were theoretically studied to rationalize the interchalcogen hypercoordination vs reduction to π-RA dichotomy. It is predicted that interaction between PhS(-) and 3,4-dicyano-1,2,5-telluradiazole (12), whose EA slightly exceeds that of 6 and 7, will lead to hypercoordinate anion (17) with the interchalcogen Te-S bond being stronger than the Se-S bond observed in anion 9.
Inorganic Chemistry | 2010
Nikolay A. Semenov; Nikolay A. Pushkarevsky; Anton V. Lonchakov; Artem S. Bogomyakov; Elena A. Pritchina; Elizaveta A. Suturina; Nina P. Gritsan; Sergey N. Konchenko; R. Mews; Victor I. Ovcharenko; Andrey V. Zibarev
Decamethylchromocene, Cr(II)(eta(5)-C(5)(CH(3))(5))(2) (2), readily reduced [1,2,5]thiadiazolo[3,4-c][1,2,5]thiadiazole (1) in a tetrahydrofuran solvent at ambient temperature with the formation of radical-anion salt [2](+)[1](-) (3) isolated in 97% yield. The heterospin salt 3 ([2](+), S = 3/2; [1](-), S = 1/2) was characterized by single-crystal X-ray diffraction as well as magnetic susceptibility measurements in the temperature range 2-300 K. The experimental data together with theoretical analysis of the salts magnetic structure within the CASSCF and spin-unrestricted broken-symmetry (BS) density functional theory (DFT) approaches revealed antiferromagnetic (AF) interactions in the crystalline 3: significant between anions [1](-), weak between cations [2](+), and very weak between [1](-) and [2](+). Experimental temperature dependences of the magnetic susceptibility and the effective magnetic moment of 3 were very well reproduced in the assumption of the AF-coupled [1](-)...[1](-) (J(1) = -40 +/- 9 cm(-1)) and [2](+)...[2](+) (J(2) = -0.58 +/- 0.03 cm(-1)) pairs. The experimental J(1) value is in reasonable agreement with the value calculated using BS UB3LYP/6-31+G(d) (-61 cm(-1)) and CASSCF(10,10)/6-31+G(d) (-15.3 cm(-1)) approaches. The experimental J(2) value is also in agreement with that calculated using the BS DFT approach (-0.33 cm(-1)).
Inorganic Chemistry | 2013
Nikolay A. Semenov; Nikolay A. Pushkarevsky; Elizaveta A. Suturina; Elena A. Chulanova; Natalia V. Kuratieva; Artem S. Bogomyakov; Irina G. Irtegova; Nadezhda V. Vasilieva; Lidia S. Konstantinova; Nina P. Gritsan; Oleg A. Rakitin; Victor I. Ovcharenko; Sergey N. Konchenko; Andrey V. Zibarev
Bis(toluene)chromium(0), Cr(0)(η(6)-C7H8)2 (3), readily reduced [1,2,5]thiadiazolo[3,4-c][1,2,5]thiadiazole (1) and [1,2,5]thiadiazolo[3,4-b]pyrazine (2) in a tetrahydrofuran solvent with the formation of heterospin, S1 = S2 = ½, radical-ion salts [3](+)[1](-) (4) and [3](+)[2](-) (5) isolated in high yields. The salts 4 and 5 were characterized by single-crystal X-ray diffraction (XRD), solution and solid-state electron paramagnetic resonance, and magnetic susceptibility measurements in the temperature range 2-300 K. Despite the formal similarity of the salts, their crystal structures were very different and, in contrast to 4, in 5 anions were disordered. For the XRD structures of the salts, parameters of the Heisenberg spin Hamiltonian were calculated using the CASSCF/NEVPT2 and broken-symmetry density functional theory approaches, and the complex magnetic motifs featuring the dominance of antiferromagnetic (AF) interactions were revealed. The experimental χT temperature dependences of the salts were simulated using the Van Vleck formula and a diagonalization of the matrix of the Heisenberg spin Hamiltonian for the clusters of 12 paramagnetic species with periodic boundary conditions. According to the calculations and χT temperature dependence simulation, a simplified magnetic model can be suggested for the salt 4 with AF interactions between the anions ([1](-)···[1](-), J1 = -5.77 cm(-1)) and anions and cations ([1](-)···[3](+), J2 = -0.84 cm(-1)). The magnetic structure of the salt 5 is much more complex and can be characterized by AF interactions between the anions, [2](-)···[2](-), and by both AF and ferromagnetic (FM) interactions between the anions and cations, [2](-)···[3](+). The contribution from FM interactions to the magnetic properties of the salt 5 is in qualitative agreement with the positive value of the Weiss constant Θ (0.4 K), whereas for salt 4, the constant is negative (-7.1 K).
Russian Chemical Bulletin | 2015
Nikolay A. Semenov; Anton V. Lonchakov; Nina P. Gritsan; Andrey V. Zibarev
Synthetic, structural, and thermodynamic aspects of the recently discovered new reaction, donor-acceptor coordination of anions (A–) by chalcogen atoms (E) of 1,2,5-chalcogenadiazoles, are considered. According to the quantum chemical calculations, the charge transfer from A– to the heterocycle via the mechanism of negative hyperconjugation (i.e., from the MO of the lone pair of A– to the virtual σ* orbital of the E—N bond of chalcogenadiazole) depends on the nature of E and A–, being 0.42—0.52 and 0.30—0.44 e in terms of the Mulliken and NBO methods, respectively. According to the X-ray diffraction data, the E—A– coordinate bond is always longer than the sum of the covalent radii but shorter than the sum of the van der Waals radii of the atoms forming the bond. The E—A– bond energy varies in a wide range, from ~25 kcal mol–1 comparable to the energy of weak covalent bonds (e.g., internal N—N bond in organic azides) to ~86 kcal mol–1 comparable to the C—C bond energy in organic compounds. The quantum chemical estimations of the thermodynamics of the donor-acceptor coordination of the anions by the chalcogen atoms of 1,2,5-chalcogenadiazoles indicate that for E = Te and Se this reaction may be of general character also covering E = S in some cases.
Inorganic Chemistry | 2015
Nikolay A. Pushkarevsky; Nikolay A. Semenov; Alexey A. Dmitriev; Natalia V. Kuratieva; Artem S. Bogomyakov; Irina G. Irtegova; Nadezhda V. Vasilieva; Bela E. Bode; Nina P. Gritsan; Lidia S. Konstantinova; J. Derek Woollins; Oleg A. Rakitin; Sergey N. Konchenko; Victor I. Ovcharenko; Andrey V. Zibarev
Low-temperature interaction of [1,2,5]thiadiazolo[3,4-c][1,2,5]thiadiazole (1) with MoMes2 (Mes = mesitylene/1,3,5-trimethylbenzene) in tetrahydrofuran gave the heterospin (S1 = S2 = (1)/2) radical-ion salt [MoMes2](+)[1](-) (2) whose structure was confirmed by single-crystal X-ray diffraction (XRD). The structure revealed alternating layers of the cations and anions with the Mes ligands perpendicular, and the anions tilted by 45°, to the layer plane. At 300 K the effective magnetic moment of 2 is equal to 2.40 μB (theoretically expected 2.45 μB) and monotonically decreases with lowering of the temperature. In the temperature range 2-300 K, the molar magnetic susceptibility of 2 is well-described by the Curie-Weiss law with parameters C and θ equal to 0.78 cm(3) K mol(-1) and -31.2 K, respectively. Overall, the magnetic behavior of 2 is similar to that of [CrTol2](+)[1](-) and [CrCp*2](+)[1](-), i.e., changing the cation [MAr2](+) 3d atom M = Cr (Z = 24) with weak spin-orbit coupling (SOC) to a 4d atom M = Mo (Z = 42) with stronger SOC does not affect macroscopic magnetic properties of the salts. For the XRD structure of salt 2, parameters of the Heisenberg spin-Hamiltonian were calculated using the broken-symmetry DFT and CASSCF approaches, and the complex 3D magnetic structure with both the ferromagnetic (FM) and antiferromagnetic (AF) exchange interactions was revealed with the latter as dominating. Salt 2 is thermally unstable and slowly loses the Mes ligands upon storage at ambient temperature. Under the same reaction conditions, interaction of 1 with MoTol2 (Tol = toluene) proceeded with partial loss of the Tol ligands to afford diamagnetic product.
Chemistry: A European Journal | 2017
Lidia S. Konstantinova; Ilia V. Baranovsky; Elena A. Pritchina; Maksim S. Mikhailov; Irina Yu. Bagryanskaya; Nikolay A. Semenov; Irina G. Irtegova; G. E. Sal'nikov; Konstantin A. Lyssenko; Nina P. Gritsan; Andrey V. Zibarev; Oleg A. Rakitin
A new approach to the synthesis of fused 1,2,3-thiaselenazoles-rare five-membered heterocycles that contain two different chalcogens-from the corresponding 1,2,3-dithiazoles and SeO2 was accomplished by selective exchange of S and Se atoms. The fused carbo- and heterocyclic units were indene, naphthalenone, cyclohexadienone, cyclopentadiene, benzoannulene, and benzoxazine. The molecular structures of two of the thiaselenadiazole products and one of the dithiazole precursors were confirmed by single-crystal X-ray diffraction. The reaction is highly solvent selective; it only takes place in solvents that contain a C=O group (e.g., DMF or tetramethylurea). According to DFT calculations, the reaction is thermodynamically favorable. Based on the DFT calculations and 77 Se NMR spectroscopy, two tentative mechanisms that feature isomeric transition states and intermediates are suggested for the reaction via ring-opening addition of SeO2 to the S-X dithiazole bond (X=N or S). The DFT-calculated first adiabatic electron affinities of the compounds were chalcogen independent and positive in all cases, which assumes formation of thermodynamically stable radical anions (RAs). These calculated RAs featured either normal or abnormal elongation of the S1-X2 (X=S or Se) bond relative to their neutral precursors and possessed π* or σ* SOMOs, respectively.
Chemistry: A European Journal | 2018
Nikolay A. Semenov; Dmitry E. Gorbunov; Margarita V. Shakhova; G. E. Sal'nikov; Irina Yu. Bagryanskaya; Valery V. Korolev; Jens Beckmann; Nina P. Gritsan; Andrey V. Zibarev
Donor-acceptor (D-A) complexes between 3,4-dicyano-1,2,5-chalcogenadiazoles [chalcogen=Te (1 a), Se (1 b), S (1 c)] and the pseudohalides CN- and XCN- (X=O, S, Se, Te) were studied experimentally and theoretically. For 1 a, they were isolated as [K(18-crown-6)][1 a-CN] (2), [K(18-crown-6)][1 a-NCO] (3), [K(18-crown-6)][1 a-SCN] (4), [K(18-crown-6)][1 a-SeCN] (5), and [K][1 a-NCSe] (6) and characterized by X-ray diffraction (XRD), UV/Vis and NMR spectroscopy, and DFT and QTAIM calculations. For 1 b and 1 c, the complexes were not isolated due to unfavorable thermodynamics. In all isolated complexes, the D-A bonds, stabilized by negative hyperconjugation, were longer than the sum of the covalent radii and shorter than the sum of the van der Waals radii of the bonded atoms. In mixtures of 1 a, F- , and SeCN- , the complex [1 a-F]- was selectively formed in accordance with thermodynamics. The reaction of 1 a with SeCN- and the cyclic trimeric perfluoro-ortho-phenylene mercury afforded the complex [K(18-crown-6)][SCN]⋅(o-C6 F4 Hg)3 , which was characterized by XRD.
Archive | 2012
Elizaveta A. Suturina; Nikolay A. Semenov; Anton V. Lonchakov; I.Yu. Bagryanskaya; Yury V. Gatilov; Irina G. Irtegova; Nadezhda V. Vasilieva; Enno Lork; R. Mews; Nina P. Gritsan; Andrey V. Zibarev
Related Article: E.A.Suturina, N.A.Semenov, A.V.Lonchakov, I.Yu.Bagryanskaya, Y.V.Gatilov, I.G.Irtegova, N.V.Vasilieva, E.Lork, R.Mews, N.P.Gritsan, A.V.Zibarev|2011|J.Phys.Chem.A|115|4851|doi:10.1021/jp2019523
Organometallics | 2014
Nikolay A. Semenov; Anton V. Lonchakov; Nikolay A. Pushkarevsky; Elizaveta A. Suturina; Valery V. Korolev; Enno Lork; Vladimir G. Vasiliev; Sergey N. Konchenko; Jens Beckmann; Nina P. Gritsan; Andrey V. Zibarev
Synthetic Metals | 2012
Nikolay A. Pushkarevsky; Anton V. Lonchakov; Nikolay A. Semenov; Enno Lork; L.I. Buravov; Lidia S. Konstantinova; Georg T. Silber; Neil Robertson; Nina P. Gritsan; Oleg A. Rakitin; J. Derek Woollins; Eduard B. Yagubskii; Jens Beckmann; Andrey V. Zibarev