Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nikolay Medvedev is active.

Publication


Featured researches published by Nikolay Medvedev.


Neuroscience | 2007

Reversible reduction in dendritic spines in CA1 of rat and ground squirrel subjected to hypothermia–normothermia in vivo: A three-dimensional electron microscope study

Victor I. Popov; Nikolay Medvedev; I.V. Patrushev; D. A. Ignat’ev; E.D. Morenkov; Michael G. Stewart

A study was made at electron microscope level of changes in the three-dimensional (3-D) morphology of dendritic spines and postsynaptic densities (PSDs) in CA1 of the hippocampus in ground squirrels, taken either at low temperature during hibernation (brain temperature 2-4 degrees C), or after warming and recovery to the normothermic state (34 degrees C). In addition, the morphology of PSDs and spines was measured in a non-hibernating mammal, rat, subjected to cooling at 2 degrees C at which time core rectal temperature was 15 degrees C, and then after warming to normothermic conditions. Significant differences were found in the proportion of thin and stubby spines, and shaft synapses in CA1 for rats and ground squirrels for normothermia compared with cooling or hibernation. Hypothermia induced a decrease in the proportion of thin spines, and an increase in stubby and shaft spines, but no change in the proportion of mushroom spines. The changes in redistribution of these three categories of spines in ground squirrel are more prominent than in rat. There were no significant differences in synapse density determined for ground squirrels or rats at normal compared with low temperature. Measurement of spine and PSD volume (for mushroom and thin spines) also showed no significant differences between the two functional states in either rats or ground squirrels, nor were there any differences in distances between neighboring synapses. Spinules on dendritic shafts were notable qualitatively during hibernation, but absent in normothermia. These data show that hypothermia results in morphological changes which are essentially similar in both a hibernating and a non-hibernating animal.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Mechanism for long-term memory formation when synaptic strengthening is impaired

Kasia Radwanska; Nikolay Medvedev; Grace Schenatto Pereira; Olivia Engmann; Nina Thiede; Márcio Flávio Dutra Moraes; Agnès Villers; Elaine E. Irvine; Nicollette S Maunganidze; Elzbieta Pyza; Laurence Ris; Magda Szymańska; Michał Lipiński; Leszek Kaczmarek; Michael G. Stewart; Karl Peter Giese

Long-term memory (LTM) formation has been linked with functional strengthening of existing synapses and other processes including de novo synaptogenesis. However, it is unclear whether synaptogenesis can contribute to LTM formation. Here, using α-calcium/calmodulin kinase II autophosphorylation-deficient (T286A) mutants, we demonstrate that when functional strengthening is severely impaired, contextual LTM formation is linked with training-induced PSD95 up-regulation followed by persistent generation of multiinnervated spines, a type of synapse that is characterized by several presynaptic terminals contacting the same postsynaptic spine. Both PSD95 up-regulation and contextual LTM formation in T286A mutants required signaling by the mammalian target of rapamycin (mTOR). Furthermore, we show that contextual LTM resists destabilization in T286A mutants, indicating that LTM is less flexible when synaptic strengthening is impaired. Taken together, we suggest that activation of mTOR signaling, followed by overexpression of PSD95 protein and synaptogenesis, contributes to formation of invariant LTM when functional strengthening is impaired.


European Journal of Neuroscience | 2008

A cell adhesion molecule mimetic, FGL peptide, induces alterations in synapse and dendritic spine structure in the dentate gyrus of aged rats: a three-dimensional ultrastructural study

Victor I. Popov; Nikolay Medvedev; Igor Kraev; P.L.A. Gabbott; Heather A. Davies; Marina A. Lynch; Thelma R. Cowley; Vladimir Berezin; Elisabeth Bock; Michael G. Stewart

The FGL peptide is a neural cell adhesion molecule (NCAM) mimetic comprising a 15‐amino‐acid‐long sequence of the FG loop region of the second fibronectin type III module of NCAM. It corresponds to the binding site of NCAM for the fibroblast growth factor receptor 1. FGL improves cognitive function through enhancement of synaptic function. We examined the effect of FGL on synaptic and dendritic structure in the brains of aged (22‐month‐old) rats that were injected subcutaneously (8 mg/kg) at 2‐day intervals until 19 days after the start of the experiment. Animals were perfused with fixative, brains removed and coronal sections cut at 50 µm. The hippocampal volume was measured, tissue embedded and ultrathin sections viewed in a JEOL 1010 electron microscope. Analyses were made of synaptic and dendritic parameters following three‐dimensional reconstruction via images from a series of ∼100 serial ultrathin sections. FGL affected neither hippocampal volume nor spine or synaptic density in the middle molecular layer of the dentate gyrus. However, it increased the ratio of mushroom to thin spines, number of multivesicular bodies and also increased the frequency of appearance of coated pits. Three‐dimensional analysis showed a significant decrease in both post‐synaptic density and apposition zone curvature of mushroom spines following FGL treatment, whereas for thin spines the convexity of the apposition zone increased. These data indicate that FGL induces large changes in the fine structure of synapses and dendritic spines in hippocampus of aged rats, complementing data showing its effect on cognitive processes.


European Journal of Neuroscience | 2008

The glutamate receptor 2 subunit controls post-synaptic density complexity and spine shape in the dentate gyrus

Nikolay Medvedev; José J. Rodríguez-Arellano; Victor I. Popov; Heather A. Davies; Cezar M. Tigaret; Ralf Schoepfer; Michael G. Stewart

In adult brain the majority of AMPA glutamate receptor (GluR) subunits contain GluR2. In knock‐out (KO) mice the absence of GluR2 results in consequences for synaptic plasticity including cognitive impairments. Here the morphology of dendritic spines and their synaptic contacts was analysed via three‐dimensional reconstruction of serial electron micrographs from dentate gyrus (DG) of adult wild type (WT) and GluR2 KO mice. Pre‐embedding immunocytochemical staining was used to examine the distribution and subcellular localization of AMPA receptor GluR1 and N‐methyl‐d‐aspartate receptor NR1 subunits. There were no significant changes in synapse density in the DG of GluR2 KO compared with WT mice. However, in GluR2 KO mice there was a significant decrease in the percentage of synapses on mushroom spines but an increase in synapses on thin spines. There was also a large decrease in the proportion of synapses with complex perforated/segmented post‐synaptic densities (PSDs) (25 vs. 78% in WT) but an increase in synapses with macular PSDs (75 vs. 22%). These data were coupled in GluR2 KO mice with significant decreases in volume and surface area of mushroom spines and their PSDs. In both GluR2 KO and WT mice, NR1 and GluR1 receptors were present in dendrites and spines but there was a significant reduction in NR1 labelling of spine membranes and cytoplasm in GluR2 KO mice, and a small decrease in GluR1 immunolabelling in membranes and cytoplasm of spines in GluR2 KO compared with WT mice. Our data demonstrate that the absence of GluR2 has a significant effect on both DG synapse and spine cytoarchitecture and the expression of NR1 receptors.


Neuroscience | 2010

The N-methyl-d-aspartate receptor antagonist CPP alters synapse and spine structure and impairs long-term potentiation and long-term depression induced morphological plasticity in dentate gyrus of the awake rat

Nikolay Medvedev; Victor I. Popov; J.J. Rodriguez Arellano; G. Dallérac; Heather A. Davies; P.L.A. Gabbott; Serge Laroche; Igor Kraev; Valérie Doyère; Michael G. Stewart

Long-term morphological synaptic changes associated with homosynaptic long-term potentiation (LTP) and heterosynaptic long-term depression (LTD) in vivo, in awake adult rats were analyzed using three-dimensional (3-D) reconstructions of electron microscope images of ultrathin serial sections from the molecular layer of the dentate gyrus. For the first time in morphological studies, the specificity of the effects of LTP and LTD on both spine and synapse ultrastructure was determined using an N-methyl-d-aspartate (NMDA) receptor antagonist CPP (3-[(R)-2-carboxypiperazin-4-yl]-propyl-1-phosphonic acid). There were no differences in synaptic density 24 h after LTP or LTD induction, and CPP alone had no effect on synaptic density. LTP increased significantly the proportion of mushroom spines, whereas LTD increased the proportion of thin spines, and both LTP and LTD decreased stubby spine number. Both LTP and LTD increased significantly spine head evaginations (spinules) into synaptic boutons and CPP blocked these changes. Synaptic boutons were smaller after LTD, indicating a pre-synaptic effect. Interestingly, CPP alone decreased bouton and mushroom spine volumes, as well as post-synaptic density (PSD) volume of mushroom spines.These data show similarities, but also some clear differences, between the effects of LTP and LTD on spine and synaptic morphology. Although CPP blocks both LTP and LTD, and impairs most morphological changes in spines and synapses, CPP alone was shown to exert effects on aspects of spine and synaptic structure.


Experimental Neurology | 2011

A neural cell adhesion molecule-derived peptide, FGL, attenuates glial cell activation in the aged hippocampus

Bunmi Ojo; Payam Rezaie; P.L.A. Gabbott; Thelma R. Cowely; Nikolay Medvedev; Marina A. Lynch; Michael G. Stewart

Neuroglial activation is a typical hallmark of ageing within the hippocampus, and correlates with age-related cognitive deficits. We have used quantitative immunohistochemistry and morphometric analyses to investigate whether systemic treatment with the Neural Cell Adhesion Molecule (NCAM)-derived peptide FG Loop (FGL) specifically alters neuroglial activation and population densities within the aged rat hippocampus (22 months of age). A series of 50 μm paraformaldehyde/acrolein-fixed sections taken throughout the dorsal hippocampus (5 animals per group) were immunostained to detect astrocytes (GFAP and S100ß) and microglial cells (CD11b/OX42 and MHCII/OX6), and analysed using computerised image analysis and optical segmentation (Image-Pro Plus, Media Cybernetics). FGL treatment reduced the density of CD11b+ and MHCII+ microglia in aged animals, concomitant with a reduction in immunoreactivity for these phenotypic markers. FGL treatment also markedly reduced GFAP immunoreactivity within all hippocampal subfields in aged animals, without exerting an appreciable effect on the density of S100ß+ cells. These results demonstrate that FGL can indeed regulate neuroglial activation and reduce microglial cell density in the aged hippocampus, and support its potential use as a therapeutic agent in age-related brain disorders.


Nature Communications | 2017

Anti-platelet factor 4/polyanion antibodies mediate a new mechanism of autoimmunity.

Thi-Huong Nguyen; Nikolay Medvedev; Mihaela Delcea; Andreas Greinacher

Antibodies recognizing complexes of the chemokine platelet factor 4 (PF4/CXCL4) and polyanions (P) opsonize PF4-coated bacteria hereby mediating bacterial host defense. A subset of these antibodies may activate platelets after binding to PF4/heparin complexes, causing the prothrombotic adverse drug reaction heparin-induced thrombocytopenia (HIT). In autoimmune-HIT, anti-PF4/P-antibodies activate platelets in the absence of heparin. Here we show that antibodies with binding forces of approximately 60–100 pN activate platelets in the presence of polyanions, while a subset of antibodies from autoimmune-HIT patients with binding forces ≥100 pN binds to PF4 alone in the absence of polyanions. These antibodies with high binding forces cluster PF4-molecules forming antigenic complexes which allow binding of polyanion-dependent anti-PF4/P-antibodies. The resulting immunocomplexes induce massive platelet activation in the absence of heparin. Antibody-mediated changes in endogenous proteins that trigger binding of otherwise non-pathogenic (or cofactor-dependent) antibodies may also be relevant in other antibody-mediated autoimmune disorders.


Neuroscience | 2010

Alterations in synaptic curvature in the dentate gyrus following induction of long-term potentiation, long-term depression, and treatment with the N-methyl-d-aspartate receptor antagonist CPP

Nikolay Medvedev; Victor I. Popov; Glenn Dallérac; Heather A. Davies; Serge Laroche; Igor Kraev; J.J. Rodriguez Arellano; Valérie Doyère; Michael G. Stewart

Alterations in curvature of the post synaptic density (PSD) and apposition zone (AZ), are believed to play an important role in determining synaptic efficacy. In the present study we have examined curvature of PSDs and AZs 24 h following homosynaptic long-term potentiation (LTP), and heterosynaptic long-term depression (LTD) in vivo, in awake adult rats. High frequency stimulation (HFS) applied to the medial perforant path to the dentate gyrus induced LTP while HFS stimulation of the lateral perforant path induced LTD in the middle molecular layer of the dentate gyrus (DG). Curvature changes were analysed in this area using three dimensional (3-D) reconstructions of electron microscope images of ultrathin serial sections. Very large and significant changes in 3-D measurements of AZ and PSD curvature occurred 24 h following both LTP and LTD, with a flattening of the normal concavity of mushroom spine heads and a change to convexity for thin spines. An N-methyl-D-aspartate (NMDA) receptor antagonist CPP (3-[(R)-2-Carboxypiperazin-4-yl]-propyl-1-phosphonic acid) blocked the changes in curvature of mushroom and thin spine PSDs and apposition zones, actually increasing the concavity of mushroom spines as the spine engulfed the presynaptic bouton. In order to establish whether these changes resulted from the effect of the NMDA antagonist or from its coincidence with synaptic activation during testing we examined the effects of CPP alone on PSD and apposition zone curvature. It was found that CPP alone also caused a small decrease in curvature of both PSD and apposition zone of mushroom and thin spines.


Neuroscience and Behavioral Physiology | 2005

Three-Dimensional Reconstruction of Synapses and Dendritic Spines in the Rat and Ground Squirrel Hippocampus: New Structural-Functional Paradigms for Synaptic Function

Victor I. Popov; A. A. Deev; O. A. Klimenko; Igor Kraev; S. B. Kuz’minykh; Nikolay Medvedev; I.V. Patrushev; R. V. Popov; V. V. Rogachevskii; S. S. Khutsiyan; Michael G. Stewart; E. E. Fesenko

Published data are reviewed along with our own data on synaptic plasticity and rearrangements of synaptic organelles in the central nervous system. Contemporary laser scanning and confocal microscopy techniques are discussed, along with the use of serial ultrathin sections for in vivo and in vitro studies of dendritic spines, including those addressing relationships between morphological changes and the efficiency of synaptic transmission, especially in conditions of the long-term potentiation model. Different categories of dendritic spines and postsynaptic densities are analyzed, as are the roles of filopodia in originating spines. The role of serial ultrathin sections for unbiased quantitative stereological analysis and three-dimensional reconstruction is assessed. The authors’ data on the formation of more than two synapses on single mushroom spines on neurons in hippocampal field CA1 are discussed. Analysis of these data provides evidence for new paradigms in both the organization and functioning of synapses.


Advances in Experimental Medicine and Biology | 2010

Dendritic spine and synapse morphological alterations induced by a neural cell adhesion molecule mimetic.

Michael G. Stewart; Popov; Nikolay Medvedev; P.L.A. Gabbott; Nicola J. Corbett; Igor Kraev; Heather A. Davies

The neural cell adhesion molecule (NCAM) is a glycoprotein expressed on the surface of neurons and glial cells. It plays a key role in morphogenesis of the nervous system, regeneration of damaged neural tissue and synaptic plasticity. The extracellular domain of NCAM engages in homophilic interactions (NCAM binding to NCAM) and in heterophilic interactions between NCAM and other proteins such as the fibroblast growth factor (FGF) receptor. It promotes synaptogenesis and activity-dependent remodelling of synapses but less is known of its influence on synaptic and dendritic morphology. Recently, quantitative electron microscopy and 3-dimensional reconstruction (3-D) of ultrathin serial sections has been used to examine the morphology of synapses and dendritic spines in the hippocampus of rats treated with a neural cell adhesion molecule-derived fibroblast growth factor receptor agonist, FGL-peptide (an NCAM mimetic). These data show clearly that the FGL peptide has marked influences on both spine and synaptic form.

Collaboration


Dive into the Nikolay Medvedev's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

E. E. Fesenko

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

I.V. Patrushev

Russian Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge