Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nikolay O. Bukanov is active.

Publication


Featured researches published by Nikolay O. Bukanov.


Nature | 2006

Long-lasting arrest of murine polycystic kidney disease with CDK inhibitor roscovitine

Nikolay O. Bukanov; Laurie A. Smith; Katherine W. Klinger; Steven R. Ledbetter; Oxana Ibraghimov-Beskrovnaya

Polycystic kidney diseases (PKDs) are primarily characterized by the growth of fluid-filled cysts in renal tubules leading to end-stage renal disease. Mutations in the PKD1 or PKD2 genes lead to autosomal dominant PKD (ADPKD), a slowly developing adult form. Autosomal recessive polycystic kidney disease results from mutations in the PKHD1 gene, affects newborn infants and progresses very rapidly. No effective treatment is currently available for PKD. A previously unrecognized site of subcellular localization was recently discovered for all proteins known to be disrupted in PKD: primary cilia. Because ciliary functions seem to be involved in cell cycle regulation, disruption of proteins associated with cilia or centrioles may directly affect the cell cycle and proliferation, resulting in cystic disease. We therefore reasoned that the dysregulated cell cycle may be the most proximal cause of cystogenesis, and that intervention targeted at this point could provide significant therapeutic benefit for PKD. Here we show that treatment with the cyclin-dependent kinase (CDK) inhibitor (R)-roscovitine does indeed yield effective arrest of cystic disease in jck and cpk mouse models of PKD. Continuous daily administration of the drug is not required to achieve efficacy; pulse treatment provides a robust, long-lasting effect, indicating potential clinical benefits for a lifelong therapy. Molecular studies of the mechanism of action reveal effective cell-cycle arrest, transcriptional inhibition and attenuation of apoptosis. We found that roscovitine is active against cysts originating from different parts of the nephron, a desirable feature for the treatment of ADPKD, in which cysts form in multiple nephron segments. Our results indicate that inhibition of CDK is a new and effective approach to the treatment of PKD.


Journal of The American Society of Nephrology | 2006

Development of Polycystic Kidney Disease in Juvenile Cystic Kidney Mice: Insights into Pathogenesis, Ciliary Abnormalities, and Common Features with Human Disease

Laurie A. Smith; Nikolay O. Bukanov; Hervé Husson; Ryan J. Russo; Tiffany C. Barry; Ava L. Taylor; David R. Beier; Oxana Ibraghimov-Beskrovnaya

Significant progress in understanding the molecular mechanisms of polycystic kidney disease (PKD) has been made in recent years. Translating this understanding into effective therapeutics will require testing in animal models that closely resemble human PKD by multiple parameters. Similar to autosomal dominant PKD, juvenile cystic kidney (jck) mice develop cysts in multiple nephron segments, including cortical collecting ducts, distal tubules, and loop of Henle. The jck mice display gender dimorphism in kidney disease progression with more aggressive disease in male mice. Gonadectomy experiments show that testosterone aggravates the severity of the disease in jck male mice, while female gonadal hormones have protective effects. EGF receptor is overexpressed and mislocalized in jck cystic epithelia, a hallmark of human disease. Increased cAMP levels in jck kidneys and activation of the B-Raf/extracellular signal-regulated kinase pathway are demonstrated. The effect of jck mutation on the expression of Nek8, a NIMA-related (never in mitosis A) kinase, and polycystins in jck cilia is shown for the first time. Nek8 overexpression and loss of ciliary localization in jck epithelia are accompanied by enhanced expression of polycystins along the cilia. The primary cilia in jck kidneys are significantly more lengthened than the cilia in wild-type mice, suggesting a role for Nek8 in controlling ciliary length. Collectively, these data demonstrate that the jck mice should be useful for testing potential therapies and for studying the molecular mechanisms that link ciliary structure/function and cystogenesis.


Nature Medicine | 2010

Inhibition of glucosylceramide accumulation results in effective blockade of polycystic kidney disease in mouse models

Thomas A. Natoli; Laurie A. Smith; Kelly A. Rogers; Bing Wang; Svetlana Komarnitsky; Yeva Budman; Alexei Belenky; Nikolay O. Bukanov; William Dackowski; Hervé Husson; Ryan J. Russo; James A. Shayman; Steven R. Ledbetter; John P. Leonard; Oxana Ibraghimov-Beskrovnaya

Polycystic kidney disease (PKD) represents a family of genetic disorders characterized by renal cystic growth and progression to kidney failure. No treatment is currently available for people with PKD, although possible therapeutic interventions are emerging. Despite genetic and clinical heterogeneity, PKDs have in common defects of cystic epithelia, including increased proliferation, apoptosis and activation of growth regulatory pathways. Sphingolipids and glycosphingolipids are emerging as major regulators of these cellular processes. We sought to evaluate the therapeutic potential for glycosphingolipid modulation as a new approach to treat PKD. Here we demonstrate that kidney glucosylceramide (GlcCer) and ganglioside GM3 levels are higher in human and mouse PKD tissue as compared to normal tissue, regardless of the causative mutation. Blockade of GlcCer accumulation with the GlcCer synthase inhibitor Genz-123346 effectively inhibits cystogenesis in mouse models orthologous to human autosomal dominant PKD (Pkd1 conditional knockout mice) and nephronophthisis (jck and pcy mice). Molecular analysis in vitro and in vivo indicates that Genz-123346 acts through inhibition of the two key pathways dysregulated in PKD: Akt protein kinase–mammalian target of rapamycin signaling and cell cycle machinery. Taken together, our data suggest that inhibition of GlcCer synthesis represents a new and effective treatment option for PKD.


Journal of The American Society of Nephrology | 2003

Functional Analysis of PKD1 Transgenic Lines Reveals a Direct Role for Polycystin-1 in Mediating Cell-Cell Adhesion

Andrew J. Streets; Linda J. Newby; Michael J. O’Hare; Nikolay O. Bukanov; Oxana Ibraghimov-Beskrovnaya; Albert C.M. Ong

The PKD1 protein, polycystin-1, is a large transmembrane protein of uncertain function and topology. To study the putative functions of polycystin-1, conditionally immortalized kidney cells transgenic for PKD1 were generated and an interaction between transgenic polycystin-1 and endogenous polycystin-2 has been recently demonstrated in these cells. This study provides the first functional evidence that transgenic polycystin-1 directly mediates cell-cell adhesion. In non-permeabilized cells, polycystin-1 localized to the lateral cell borders with N-terminal antibodies but not with a C-terminal antibody; there was a clear difference in surface intensity between transgenic and non-transgenic cells. Compared with non-transgenic cells, transgenic cells showed a dramatic increase in resistance to the disruptive effect of a polycystin-1 antibody raised to the PKD domains of polycystin-1 (IgPKD) in both cell adhesion and cell aggregation assays. The differential effect on cell adhesion between transgenic and non-transgenic cells could be reproduced using recombinant fusion proteins encoding non-overlapping regions of the IgPKD domains. In contrast, antibodies raised to other extracellular domains of polycystin-1 had no effect on cell adhesion. Finally, the specificity of this finding was confirmed by the lack of effect of IgPKD antibody on cell adhesion in a PKD1 cystic cell line deficient in polycystin-1. These results demonstrate that one of the primary functions of polycystin-1 is to mediate cell-cell adhesion in renal epithelial cells, probably via homophilic or heterophilic interactions of the PKD domains. Disruption of cell-cell adhesion during tubular morphogenesis may be an early initiating event for cyst formation in ADPKD.


Cellular and Molecular Life Sciences | 2008

Polycystic kidney diseases: From molecular discoveries to targeted therapeutic strategies

Oxana Ibraghimov-Beskrovnaya; Nikolay O. Bukanov

Abstract.Polycystic kidney diseases (PKDs) represent a large group of progressive renal disorders characterized by the development of renal cysts leading to end-stage renal disease. Enormous strides have been made in understanding the pathogenesis of PKDs and the development of new therapies. Studies of autosomal dominant and recessive polycystic kidney diseases converge on molecular mechanisms of cystogenesis, including ciliary abnormalities and intracellular calcium dysregulation, ultimately leading to increased proliferation, apoptosis and dedifferentiation. Here we review the pathobiology of PKD, highlighting recent progress in elucidating common molecular pathways of cystogenesis. We discuss available models and challenges for therapeutic discovery as well as summarize the results from preclinical experimental treatments targeting key disease-specific pathways.


American Journal of Physiology-renal Physiology | 2010

A metabolomics approach using juvenile cystic mice to identify urinary biomarkers and altered pathways in polycystic kidney disease

Sandra L. Taylor; Sheila Ganti; Nikolay O. Bukanov; Arlene B. Chapman; Oliver Fiehn; Michael V. Osier; Kyoungmi Kim; Robert H. Weiss

Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited kidney disease and affects 1 in 1,000 individuals. Ultrasound is most often used to diagnose ADPKD; such a modality is only useful late in the disease after macroscopic cysts are present. There is accumulating evidence suggesting that there are common cellular and molecular mechanisms responsible for cystogenesis in human and murine PKD regardless of the genes mutated, and, in the case of complex metabolomic analysis, the use of a mouse model has distinct advantages for proof of principle over a human study. Therefore, in this study we utilized a urinary metabolomics-based investigation using gas chromatography-time of flight mass spectrometry to demonstrate that the cystic mouse can be discriminated from its wild-type counterpart by urine analysis alone. At day 26 of life, before there is serological evidence of kidney dysfunction, affected mice are distinguishable by urine metabolomic analysis; this finding persists through 45 days until 64 days, at which time body weight differences confound the results. Using functional score analysis and the KEGG pathway database, we identify several biologically relevant metabolic pathways which are altered very early in this disease, the most highly represented being the purine and galactose metabolism pathways. In addition, we identify several specific candidate biomarkers, including allantoic acid and adenosine, which are augmented in the urine of young cystic mice. These markers and pathway components, once extended to human disease, may prove useful as a noninvasive means of diagnosing cystic kidney diseases and to suggest novel therapeutic approaches. Thus, urine metabolomics has great diagnostic potential for cystic renal disorders and deserves further study.


Cell Cycle | 2012

CDK inhibitors R-roscovitine and S-CR8 effectively block renal and hepatic cystogenesis in an orthologous model of ADPKD.

Nikolay O. Bukanov; Sarah Moreno; Thomas A. Natoli; Kelly A. Rogers; Laurie A. Smith; Steven R. Ledbetter; Nassima Oumata; Hervé Galons; Laurent Meijer; Oxana Ibraghimov-Beskrovnaya

Autosomal dominant polycystic kidney disease (ADPKD) and other forms of PKD are associated with dysregulated cell cycle and proliferation. Although no effective therapy for the treatment of PKD is currently available, possible mechanism-based approaches are beginning to emerge. A therapeutic intervention targeting aberrant cilia-cell cycle connection using CDK-inhibitor R-roscovitine showed effective arrest of PKD in jck and cpk models that are not orthologous to human ADPKD. To evaluate whether CDK inhibition approach will translate into efficacy in an orthologous model of ADPKD, we tested R-roscovitine and its derivative S-CR8 in a model with a conditionally inactivated Pkd1 gene (Pkd1 cKO). Similar to ADPKD, Pkd1 cKO mice developed renal and hepatic cysts. Treatment of Pkd1 cKO mice with R-roscovitine and its more potent and selective analog S-CR8 significantly reduced renal and hepatic cystogenesis and attenuated kidney function decline. Mechanism of action studies demonstrated effective blockade of cell cycle and proliferation and reduction of apoptosis. Together, these data validate CDK inhibition as a novel and effective approach for the treatment of ADPKD.


Histochemistry and Cell Biology | 2005

Impaired formation of desmosomal junctions in ADPKD epithelia

Ryan J. Russo; Hervé Husson; Dominique Joly; Nikolay O. Bukanov; Natacha Patey; Bertrand Knebelmann; Oxana Ibraghimov-Beskrovnaya

Mutations in polycystin-1 (PC-1) are responsible for autosomal dominant polycystic kidney disease (ADPKD), characterized by formation of fluid-filled tubular cysts. The PC-1 is a multifunctional protein essential for tubular differentiation and maturation found in desmosomal junctions of epithelial cells where its primary function is to mediate cell–cell adhesion. To address the impact of mutated PC-1 on intercellular adhesion, we have analyzed the structure/function of desmosomal junctions in primary cells derived from ADPKD cysts. Primary epithelial cells from normal kidney showed co-localization of PC-1 and desmosomal proteins at cell–cell contacts. A striking difference was seen in ADPKD cells, where PC-1 and desmosomal proteins were lost from the intercellular junction membrane, despite unchanged protein expression levels. Instead, punctate intracellular expression for PC-1 and desmosomal proteins was detected. The N-cadherin, but not E-cadherin was expressed in adherens junctions of ADPKD cells. These data together with co-sedimentation analysis demonstrate that, in the absence of functional PC-1, desmosomal junctions cannot be properly assembled and remain sequestered in cytoplasmic compartments. Taken together, our results demonstrate that PC-1 is crucial for formation of intercellular contacts. We propose that abnormal expression of PC-1 causes disregulation of cellular adhesion complexes leading to increased proliferation, loss of polarity and, ultimately, cystogenesis.


Human Molecular Genetics | 2012

Loss of GM3 synthase gene, but not sphingosine kinase 1, is protective against murine nephronophthisis-related polycystic kidney disease

Thomas A. Natoli; Hervé Husson; Kelly A. Rogers; Laurie A. Smith; Bing Wang; Yeva Budman; Nikolay O. Bukanov; Steven R. Ledbetter; Katherine W. Klinger; John P. Leonard; Oxana Ibraghimov-Beskrovnaya

Genetic forms of polycystic kidney diseases (PKDs), including nephronophthisis, are characterized by formation of fluid-filled cysts in the kidneys and progression to end-stage renal disease. No therapies are currently available to treat cystic diseases, making it imperative to dissect molecular mechanisms in search of therapeutic targets. Accumulating evidence suggests a pathogenic role for glucosylceramide (GlcCer) in multiple forms of PKD. It is not known, however, whether other structural glycosphingolipids (GSLs) or bioactive signaling sphingolipids (SLs) modulate cystogenesis. Therefore, we set out to address the role of a specific GSL (ganglioside GM3) and signaling SL (sphingosine-1-phosphate, S1P) in PKD progression, using the jck mouse model of nephronopthisis. To define the role of GM3 accumulation in cystogenesis, we crossed jck mice with mice carrying a targeted mutation in the GM3 synthase (St3gal5) gene. GM3-deficient jck mice displayed milder PKD, revealing a pivotal role for ganglioside GM3. Mechanistic changes in regulation of the cell-cycle machinery and Akt-mTOR signaling were consistent with reduced cystogenesis. Dramatic overexpression of sphingosine kinase 1 (Sphk1) mRNA in jck kidneys suggested a pathogenic role for S1P. Surprisingly, genetic loss of Sphk1 exacerbated cystogenesis and was associated with increased levels of GlcCer and GM3. On the other hand, increasing S1P accumulation through pharmacologic inhibition of S1P lyase had no effect on the progression of cystogenesis or kidney GSL levels. Together, these data suggest that genes involved in the SL metabolism may be modifiers of cystogenesis, and suggest GM3 synthase as a new anti-cystic therapeutic target.


Endocrinology | 2008

Sevelamer Restores Bone Volume and Improves Bone Microarchitecture and Strength in Aged Ovariectomized Rats

T. Kuber Sampath; Petra Simic; Sarah Moreno; Nikolay O. Bukanov; Nataša Drača; Vera Kufner; Ana Tikvica; Andrew T. Blair; Damir Semenski; Mladen Brnčić; Steven K. Burke; Slobodan Vukicevic

Sevelamer hydrochloride, a noncalcium phosphate binder, has been shown to reduce coronary artery and aortic calcification, and to improve trabecular bone mineral density in hemodialysis patients with chronic kidney disease. Here, we examined whether sevelamer given orally for 12 wk with normal food could restore bone volume (BV) and strength in aged ovariectomized (OVX) rats starting at 4 wk after OVX. Dual-energy x-ray absorptiometry, microcomputerized tomography, and bone histomorphometry analyses showed that OVX animals receiving sevelamer had increased trabecular BV (51%), trabecular number (43%), trabecular thickness (9%), cortical thickness (16%), mineral apposition rate (103%), bone formation rate (25%), and enhanced cortical and trabecular bone mechanical strength as compared with OVX rats. Sevelamer decreased collagen C telopeptide, increased osteocalcin levels, and decreased phosphate and magnesium levels without affecting calcium levels in the blood. Although sevelamer was not absorbed systemically, it stimulated osteoblast differentiation in BM-derived mesenchymal stem cell cultures, as evaluated by alkaline phosphatase positive colony-forming units, and inhibited recombinant human soluble receptor activator of nuclear factor-kappaB ligand-induced osteoclast differentiation, as evaluated by tartrate-resistant acid phosphatase positive cells in bone mineral-hematopoietic stem cell cultures. Surface enhanced laser desorption/ionization time-of-flight mass spectrometry analysis revealed that 69 proteins were differently expressed after OVX, of which 30% (20 of 69) were reversed to sham activity after sevelamer intake. PTH, fibroblast growth factor-23, and cytokine profile in serum were not significantly changed. Together, these results suggest that sevelamer in food increases the BV and improves biomechanical properties of bone in OVX rats.

Collaboration


Dive into the Nikolay O. Bukanov's collaboration.

Researchain Logo
Decentralizing Knowledge