Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Oxana Ibraghimov-Beskrovnaya is active.

Publication


Featured researches published by Oxana Ibraghimov-Beskrovnaya.


Journal of Clinical Investigation | 2004

Mechanical stimuli induce cleavage and nuclear translocation of the polycystin-1 C terminus

Veronique Chauvet; Xin Tian; Hervé Husson; David H. Grimm; Tong Wang; Thomas Hieseberger; Peter Igarashi; Anton M. Bennett; Oxana Ibraghimov-Beskrovnaya; Stefan Somlo; Michael J. Caplan

Polycystin-1, which is encoded by a gene that is mutated in autosomal dominant polycystic kidney disease (ADPKD), is involved in cell-matrix interactions as well as in ciliary signaling. The precise mechanisms by which it functions, however, remain unclear. Here we find that polycystin-1 undergoes a proteolytic cleavage that releases its C-terminal tail (CTT), which enters the nucleus and initiates signaling processes. The cleavage occurs in vivo in association with alterations in mechanical stimuli. Polycystin-2, the product of the second gene mutated in ADPKD, modulates the signaling properties of the polycystin-1 CTT. These data reveal a novel pathway by which polycystin-1 transmits messages directly to the nucleus.


Molecular Cell | 2001

Tuberin-Dependent Membrane Localization of Polycystin-1: A Functional Link between Polycystic Kidney Disease and the TSC2 Tumor Suppressor Gene

Elena Kleymenova; Oxana Ibraghimov-Beskrovnaya; Hiroyuki Kugoh; Jeffrey I. Everitt; Hui Xu; Kaoru Kiguchi; Greg Landes; Peter C. Harris; Cheryl L. Walker

The PKD1 gene accounts for 85% of autosomal dominant polycystic kidney disease (ADPKD), the most common human genetic disorder. Rats with a germline inactivation of one allele of the Tsc2 tumor suppressor gene developed early onset severe bilateral polycystic kidney disease, with similarities to the human contiguous gene syndrome caused by germline codeletion of PKD1 and TSC2 genes. Polycystic rat renal cells retained two normal Pkd1 alleles but were null for Tsc2 and exhibited loss of lateral membrane-localized polycystin-1. In tuberin-deficient cells, intracellular trafficking of polycystin-1 was disrupted, resulting in sequestration of polycystin-1 within the Golgi and reexpression of Tsc2 restored correct polycystin-1 membrane localization. These data identify tuberin as a determinant of polycystin-1 functional localization and, potentially, ADPKD severity.


Nature Medicine | 2010

Inhibition of glucosylceramide accumulation results in effective blockade of polycystic kidney disease in mouse models

Thomas A. Natoli; Laurie A. Smith; Kelly A. Rogers; Bing Wang; Svetlana Komarnitsky; Yeva Budman; Alexei Belenky; Nikolay O. Bukanov; William Dackowski; Hervé Husson; Ryan J. Russo; James A. Shayman; Steven R. Ledbetter; John P. Leonard; Oxana Ibraghimov-Beskrovnaya

Polycystic kidney disease (PKD) represents a family of genetic disorders characterized by renal cystic growth and progression to kidney failure. No treatment is currently available for people with PKD, although possible therapeutic interventions are emerging. Despite genetic and clinical heterogeneity, PKDs have in common defects of cystic epithelia, including increased proliferation, apoptosis and activation of growth regulatory pathways. Sphingolipids and glycosphingolipids are emerging as major regulators of these cellular processes. We sought to evaluate the therapeutic potential for glycosphingolipid modulation as a new approach to treat PKD. Here we demonstrate that kidney glucosylceramide (GlcCer) and ganglioside GM3 levels are higher in human and mouse PKD tissue as compared to normal tissue, regardless of the causative mutation. Blockade of GlcCer accumulation with the GlcCer synthase inhibitor Genz-123346 effectively inhibits cystogenesis in mouse models orthologous to human autosomal dominant PKD (Pkd1 conditional knockout mice) and nephronophthisis (jck and pcy mice). Molecular analysis in vitro and in vivo indicates that Genz-123346 acts through inhibition of the two key pathways dysregulated in PKD: Akt protein kinase–mammalian target of rapamycin signaling and cell cycle machinery. Taken together, our data suggest that inhibition of GlcCer synthesis represents a new and effective treatment option for PKD.


Journal of The American Society of Nephrology | 2003

Functional Analysis of PKD1 Transgenic Lines Reveals a Direct Role for Polycystin-1 in Mediating Cell-Cell Adhesion

Andrew J. Streets; Linda J. Newby; Michael J. O’Hare; Nikolay O. Bukanov; Oxana Ibraghimov-Beskrovnaya; Albert C.M. Ong

The PKD1 protein, polycystin-1, is a large transmembrane protein of uncertain function and topology. To study the putative functions of polycystin-1, conditionally immortalized kidney cells transgenic for PKD1 were generated and an interaction between transgenic polycystin-1 and endogenous polycystin-2 has been recently demonstrated in these cells. This study provides the first functional evidence that transgenic polycystin-1 directly mediates cell-cell adhesion. In non-permeabilized cells, polycystin-1 localized to the lateral cell borders with N-terminal antibodies but not with a C-terminal antibody; there was a clear difference in surface intensity between transgenic and non-transgenic cells. Compared with non-transgenic cells, transgenic cells showed a dramatic increase in resistance to the disruptive effect of a polycystin-1 antibody raised to the PKD domains of polycystin-1 (IgPKD) in both cell adhesion and cell aggregation assays. The differential effect on cell adhesion between transgenic and non-transgenic cells could be reproduced using recombinant fusion proteins encoding non-overlapping regions of the IgPKD domains. In contrast, antibodies raised to other extracellular domains of polycystin-1 had no effect on cell adhesion. Finally, the specificity of this finding was confirmed by the lack of effect of IgPKD antibody on cell adhesion in a PKD1 cystic cell line deficient in polycystin-1. These results demonstrate that one of the primary functions of polycystin-1 is to mediate cell-cell adhesion in renal epithelial cells, probably via homophilic or heterophilic interactions of the PKD domains. Disruption of cell-cell adhesion during tubular morphogenesis may be an early initiating event for cyst formation in ADPKD.


Cellular and Molecular Life Sciences | 2008

Polycystic kidney diseases: From molecular discoveries to targeted therapeutic strategies

Oxana Ibraghimov-Beskrovnaya; Nikolay O. Bukanov

Abstract.Polycystic kidney diseases (PKDs) represent a large group of progressive renal disorders characterized by the development of renal cysts leading to end-stage renal disease. Enormous strides have been made in understanding the pathogenesis of PKDs and the development of new therapies. Studies of autosomal dominant and recessive polycystic kidney diseases converge on molecular mechanisms of cystogenesis, including ciliary abnormalities and intracellular calcium dysregulation, ultimately leading to increased proliferation, apoptosis and dedifferentiation. Here we review the pathobiology of PKD, highlighting recent progress in elucidating common molecular pathways of cystogenesis. We discuss available models and challenges for therapeutic discovery as well as summarize the results from preclinical experimental treatments targeting key disease-specific pathways.


Trends in Molecular Medicine | 2011

mTOR signaling in polycystic kidney disease.

Oxana Ibraghimov-Beskrovnaya; Thomas A. Natoli

Polycystic kidney diseases (PKDs) comprise a large group of genetic disorders characterized by formation of cysts in the kidneys and other organs, ultimately leading to end-stage renal disease. Although PKDs can be caused by mutations in different genes, they converge on a set of common molecular mechanisms involved in cystogenesis and ciliary dysfunction, and can be qualified as ciliopathies. Recent advances in understanding the mechanisms regulating disease progression have led to the development of new therapies that are being tested in both preclinical and clinical trials. In this article, we briefly review a network of molecular pathways of cystogenesis that are regulated by ciliary functions. We discuss the mTOR pathway in depth, highlighting recent progress in understanding its role in PKD and the current results of clinical trials.


Cell Cycle | 2012

CDK inhibitors R-roscovitine and S-CR8 effectively block renal and hepatic cystogenesis in an orthologous model of ADPKD.

Nikolay O. Bukanov; Sarah Moreno; Thomas A. Natoli; Kelly A. Rogers; Laurie A. Smith; Steven R. Ledbetter; Nassima Oumata; Hervé Galons; Laurent Meijer; Oxana Ibraghimov-Beskrovnaya

Autosomal dominant polycystic kidney disease (ADPKD) and other forms of PKD are associated with dysregulated cell cycle and proliferation. Although no effective therapy for the treatment of PKD is currently available, possible mechanism-based approaches are beginning to emerge. A therapeutic intervention targeting aberrant cilia-cell cycle connection using CDK-inhibitor R-roscovitine showed effective arrest of PKD in jck and cpk models that are not orthologous to human ADPKD. To evaluate whether CDK inhibition approach will translate into efficacy in an orthologous model of ADPKD, we tested R-roscovitine and its derivative S-CR8 in a model with a conditionally inactivated Pkd1 gene (Pkd1 cKO). Similar to ADPKD, Pkd1 cKO mice developed renal and hepatic cysts. Treatment of Pkd1 cKO mice with R-roscovitine and its more potent and selective analog S-CR8 significantly reduced renal and hepatic cystogenesis and attenuated kidney function decline. Mechanism of action studies demonstrated effective blockade of cell cycle and proliferation and reduction of apoptosis. Together, these data validate CDK inhibition as a novel and effective approach for the treatment of ADPKD.


Cell Cycle | 2007

Targeting Dysregulated Cell Cycle and Apoptosis for Polycystic Kidney Disease Therapy

Oxana Ibraghimov-Beskrovnaya

Polycystic Kidneys Diseases (PKDs) represent a group of disorders characterized by the growth of fluid filled cysts in kidneys and other organs. No effective treatment is currently available for PKDs. A link between dysfunctional cilia and cell cycle regulation has been recently discovered as the most proximal trigger of cystogenesis. We examined the benefit of therapeutic correction of the cell cycle dysregulation in PKD with the cyclin dependent kinase (CDK) inhibitor roscovitine. Our data show that CDK inhibition results in the robust, long lasting arrest of cystogenesis in both slowly progressive and in aggressive mouse models of PKD. Dissection of the molecular mechanism of CDK inhibitor action shows effective cell cycle arrest, transcriptional inhibition and attenuation of apoptosis. Roscovitine treatment has proven highly effective in preserving the renal function in treated animals. We also detected significant downregulation of cAMP and aquaporin 2 in treated kidneys, suggesting the effect of CDK inhibition on preservation of epithelial differentiation. CDK inhibition was shown to be efficacious in multiple other types of renal diseases with abnormal cell cycle and proliferation. Thus, therapies directly targeting coordinate regulation of proliferation and apoptosis are emerging as effective approaches to treat multiple renal diseases.


Histochemistry and Cell Biology | 2005

Impaired formation of desmosomal junctions in ADPKD epithelia

Ryan J. Russo; Hervé Husson; Dominique Joly; Nikolay O. Bukanov; Natacha Patey; Bertrand Knebelmann; Oxana Ibraghimov-Beskrovnaya

Mutations in polycystin-1 (PC-1) are responsible for autosomal dominant polycystic kidney disease (ADPKD), characterized by formation of fluid-filled tubular cysts. The PC-1 is a multifunctional protein essential for tubular differentiation and maturation found in desmosomal junctions of epithelial cells where its primary function is to mediate cell–cell adhesion. To address the impact of mutated PC-1 on intercellular adhesion, we have analyzed the structure/function of desmosomal junctions in primary cells derived from ADPKD cysts. Primary epithelial cells from normal kidney showed co-localization of PC-1 and desmosomal proteins at cell–cell contacts. A striking difference was seen in ADPKD cells, where PC-1 and desmosomal proteins were lost from the intercellular junction membrane, despite unchanged protein expression levels. Instead, punctate intracellular expression for PC-1 and desmosomal proteins was detected. The N-cadherin, but not E-cadherin was expressed in adherens junctions of ADPKD cells. These data together with co-sedimentation analysis demonstrate that, in the absence of functional PC-1, desmosomal junctions cannot be properly assembled and remain sequestered in cytoplasmic compartments. Taken together, our results demonstrate that PC-1 is crucial for formation of intercellular contacts. We propose that abnormal expression of PC-1 causes disregulation of cellular adhesion complexes leading to increased proliferation, loss of polarity and, ultimately, cystogenesis.


Human Molecular Genetics | 2016

Reduction of ciliary length through pharmacologic or genetic inhibition of CDK5 attenuates polycystic kidney disease in a model of nephronophthisis

Hervé Husson; Sarah Moreno; Laurie A. Smith; Mandy Smith; Ryan J. Russo; Rose Pitstick; Mikhail Sergeev; Steven R. Ledbetter; Nikolay O. Bukanov; Monica Lane; Kate Zhang; Katy Billot; George A. Carlson; Jagesh V. Shah; Laurent Meijer; David R. Beier; Oxana Ibraghimov-Beskrovnaya

Polycystic kidney diseases (PKDs) comprise a subgroup of ciliopathies characterized by the formation of fluid-filled kidney cysts and progression to end-stage renal disease. A mechanistic understanding of cystogenesis is crucial for the development of viable therapeutic options. Here, we identify CDK5, a kinase active in post mitotic cells, as a new and important mediator of PKD progression. We show that long-lasting attenuation of PKD in the juvenile cystic kidneys (jck) mouse model of nephronophthisis by pharmacological inhibition of CDK5 using either R-roscovitine or S-CR8 is accompanied by sustained shortening of cilia and a more normal epithelial phenotype, suggesting this treatment results in a reprogramming of cellular differentiation. Also, a knock down of Cdk5 in jck cells using small interfering RNA results in significant shortening of ciliary length, similar to what we observed with R-roscovitine. Finally, conditional inactivation of Cdk5 in the jck mice significantly attenuates cystic disease progression and is associated with shortening of ciliary length as well as restoration of cellular differentiation. Our results suggest that CDK5 may regulate ciliary length by affecting tubulin dynamics via its substrate collapsin response mediator protein 2. Taken together, our data support therapeutic approaches aimed at restoration of ciliogenesis and cellular differentiation as a promising strategy for the treatment of renal cystic diseases.

Collaboration


Dive into the Oxana Ibraghimov-Beskrovnaya's collaboration.

Researchain Logo
Decentralizing Knowledge